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Leotures by J. von Neumann

In this treatment we shall consider the hydrodynamics of com-

pressible fluid6. In the applications in whioh we are most interested, the

motions are so rapid that there is not sufficient time to transfer an a>pre-

‘ciable amount of .;omentumor energy across streamlines. Therefore we aro

justified in neglecting viscosity and heat conductivity.

Neglecting heat conductivity assumes that XJ d2Tidx2 i$ small

compared to (pu2/g) du/’dx. “Here ;{ is the oocd’ficientof heat conductivity

J ia the mechanical equivalent of heat, T is the temperature, g is the

gravitational constant, and u is the veloaity of the fluid. In all of tho

ap@ication8 that we are interested ins this approximation is really satis.

● f’aatory- For example, if iron were acoeleruted from rest to 105 cm/’seo

velooity in 10 cmt3,and if the ~gradientof the temperature gradient were

1000°Ci’om2elinenthe heat conduction term would only be l\500th the Vduo

of tho kinetic term.

However, it is sommha% more difficult to justify the ceglect

of viscosity. This corresponds to neglecting p d2u/dx2 in comparison with

the pressure gradient. Here 1Ais the uwal coefficient of viscosity. If tho

pressure gradient is 105 bars per cmand the grhdient of the velocity gradient

is 104 per sec per Cm$ then for water

neglooting a term of the order of 200

of 10111,e

neglect of viscosity corresponds to

in comparison to a term of the order

1) See Durand, Aerodynamios4 vol. III, p. 219, for a discussion by G.I. Taylor
of tho effeot of v~scosity and heat conduction on the sharpness of a shock wave.
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For solids instead of viscosity the resis’minceto plastic flow appears and

is sometimes important. iioweverthis will not be considered here. (See

W. G. Penney, LA-155.) Radiation is neglected beoause it would introduce a

number of additional complications.

There are twu ways of describing a hydrodynamical ensemble,, In the

Eulerian systemc we consider the conditions of pressure, p; density~ P:

temperature, T: etc. of tho flyid passing a fixed point in spsce. In the

Lagrangian sys%em, we see how these condition of’the fluid..——

when we follow the motion of the individual particle~. Let

one-dimensional equations of motion ,forthe two systemso

(a). Lagrangian Form of Equation of Motion

change with time

us derive the

●
Eaoh partiols i6 designated by a value of the symbol ~ o

Here ! can correspond with the position of the particle at the time zero, or

*
with any

particle

Now*on~s

other“arbitraryconvention~ At any time, t,

is designated by x({ ,t). The motion of a

equation:

M d2x/dt2 =F

the position of this

parkicle must

Here, our particle consists of the fluid elements lying between !

! +-d~. The mase of this parti.ole is M = pod ( . The Force

on it in the X direction is the pressure at t minus the pressure

( +d ~ ~ Or

F =- (3p/~{ ) d~

satisfy

(1)

and

acting

at

(2)
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And Equation [1) b@*dm&: ‘“ “ . . .

a d2x/dt2 = . :/Po) (dP/af ) (Lagrange) (T)

Here we are using the usual hydrodynamical convention of letting the total

derivative with respect to time mean that we are following the motion of

the individual particleaO

(b)O - -~ulerian Form of Kydrodynamical Equations

The Eulerian form of the hydrodynamical equationa i~ oonveniont

when we are concerned with the properties of a fluid passing a fixed point.

Let u(x~t) be the velooity of’the fluid relative to the fixed point. Then

u = dx/dt and

d2x/dt2 =du/d% = dU/dt +(dx/dt)(6@x) = ih/tk + U@f’&x) (4)

In order to derive the equation of motion, we oonsider as.our partiole those

fluid elements which lie between x and x + dx at the time tc This partic~

● h,@ the mas68 M =p dx. ‘l!hoforce aoting on this particle in the x
.

direction is the pressure at x minus the pressure at x + dx or

F = .a@p/@ d%. Substituting these relations into Newton’s equation:

ou/& +-u (bu/bx) = - (l/p) (ap/bx) (Euler) (5)

The equation of continuity can be derived in the following manner,

Consider the fluid entering and leaving a little oloment of’volume lying

between x and x + dx, In a length of time, dt~ the mass of material entering

from the left is pu dt and the muterial leaving from the right is

~ PU + [i@J)/&c] dx] dt. Thus the net loorease of material in this element~

(ti/bt) d.xdt, is - pPu)\ox] (ix(it and the equation of continuity is

up/&t = - 6(pu)/ax (6)

—.—

9!!!!E@
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A third e~,&t’~o~tha”t~e ~?~uire

The workwhi~h is dono in unit tine on the

x + dx is equal to the pressure times the

is the conservation of energy.

fluid flowing between x and

volooity at x minus the preasuro

times the velocity at x + dx or .(d/b#(up) dxo Therefore the work done

on a unit volumo of gas in unit time is @@(up) o However a unit mass of

material occupies a specific volumoo V = I/po ‘1’husthe work done on a unit

~ss of yterial in unit time ia = V (b/&)(up). By the conservation of

wusrgyo this vmrk must be eqqal to the rate o.fcl~ang@of l~ineti~PIUa in-

ternal energy of a unit mass of material.~ The energy of the system.

E (per unit ~S6) is

E

‘J’husthe equation of

given by the relation:

=(1/2)U2 + Eint

conservation of’

Eint~ z ~/ti +

=-v (a/ax) (up)

energy i~ expressed by

)
u(b/ax) ((1/2)u2+ l&J

.

(7)

20 BMAVIOUR OF ENTROPY. MLATION ‘?iITHMECHANICS, THERMODYNAMICSO
Mm IRHEvERsIBILri’Y

In addition to the equstion of motion and equation of continuity

we have the equation of state and the equation of conservation of energy.

These four equations should be sufficient to determine the four varinbles

PS ~v ‘D and u as functions of position and titneO Howevers there was

oonaiderable confusion up to a very few ysara ago as to whether the fourth

equation should be the conservation of energy or the aonstancy of entropy.

As we shall show, a8 long as the fluid motion involves no abrupt changes in
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prcmaure or velocityi:k~e %on&&t&~ of energy implies the constanoy

● entropy and vioe versa. But whoneve~ an abrupt change, or shock wave,

the conservation of energy Ieada to a &finite change in the entropy,

Oi’

occurs

(a)● Constanoy of Entropy with Time for a Fluid Elemerh (Assumfi.ng
No Shock Waveel.

Iu fluids whose elements remain in thermodynamical equ~.librium

during the motion, changes in state aro reversible and the entropy of a

fluid element will remain oonstant with time. The fluid elements do not

remain in equilibrium during the motian in which the fluid passes through

a shock or when the motion is too rapid to maintain either chemiaal equilibrium

or to maintain equilibrium in the rotational and vibrational degrees of

freedom of the molecules (see Lewie and Von Elbo, Combustion, ~e~, ~

Exploe.ioneof Gasea, Cambridge, 1933 ). The faok that onkropy i.sconserved——

whenever the changee in state me reversible may be verified in the following

● manner. The interasd energy oan be expressed

and the entropy$ S (per

energy (7) becomes:

unit mas$). Thus the

)
u(b/bx) {*U2 ‘+Eint)

in term of the Spescifiovolume

equation of conservation of

t.ndaoarryingout the indhxited operations%

u [(?m.ht)+U(W%X] + (b Ein~\av)t, ~w’dt) +u(W/bx)l

a

\

I

.— Vp(adax] ———— ——,
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u [i.?)uhh)+ u(buhxj =-v u (a,/’ax)

AKAdfrom the equation of continuity (6)

i%v/ut+ u(W/bx) == I/p*
[
15p/i3t 1-+U(w’i)x)

= l/p (dU/ax) =V (?MA)

Then remembering %ha~ for a reversible ohange the internal energy is the

usual energy, E* of thermod~mic System

‘!oGmw-Hill. 192?, SCM pg~ 164), it must

(32)

and

‘NIWSEq. (9) becomesa

or

,~+uq=,~=o (15)

From Equation (15) it in apparent that the entropy of each partiole

change with time. If!the entropy had the same value throughout thedoes not

t inmaowhole fluid at any time, it must maintain this ~lue for all subsequent

miiim!m... ..
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● q. ktWQAliN$S METHODOF INTKGRATION●~ONE DIMENSIONAL AND IWTROPIC) ...—

Riemann developed a very useful method of integrating the equations

of motion for one-dimensional isentropic flow problems (see Riomann8s Colleoted

Papers, Durandes Aerodynamic, Vol. 111., or the first odltj.onof Rimmn~Weber) ~

Let us euppose that initially, the speaifio entropy throughout the

fluid is a constant, So, Then~ from the thoorea of the last section, we know

f%~t for all subsequent timo the specific entropy of the systcunremains SOO

(This is not true after a shock wave has developed, but WQ nhall oonsider suoh

ca8e0 lalxmc) Sinoe tho entropy is constant. we can write the equation of

state in the form of the adiabat:

P = P(VJ30)

The equation of motion (5) beco”nes:

And the equation of continuity (6) i8:

.v&%’+*E cm (18)

If we consider any function ~ [&so)8 then by virtue of Eq. (18) and.the

constanoy of entropy throughout the sy8tem0
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Adding tioge~herEqs. (17} and (19j: “S-

(k+uL’)(, ++ ‘- (%),0g +,(*)SO *

2)
RiemannOs trick was to choose a so that

For in this case the right-hand side of the equation beoome8 simply

This is accomplished by letting
.

Here c(V, So) ia the local velocity of sound.

The value of a itself is obtained by integrating dq. (2%)

(25)

From the equation of skake of the adiabatO both c ando may

as functions of v.

be determined

2) See (?.1. TaylorQs article in Durandce Aerodynamics, Volume 1110 PO 215.
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Restrictin&‘ou~s~lve;& t!}% definition of as KqO {~) become8:

Or transposing ‘

Similarly if we had subtracted Eq. (19) from (17) we would have obtained

the relation:

[
k 1

J, (U- a (U-a)=oC)-&

(26)

{27)

(28)

Theee equations have

change our framg of referenoe.

a simple interpretation provided that we

Instead of observing the coriditionfaof the

fluid at a fixed point as in the Eulorian system. or following khe mot~on

of the individual particle8 ae in the Lagrangian aystemo we now observe the

ohanges which take place in the fluid tien our frume of reference moves with

the local

move with

reference

velooity of sound with respeot to the moving fluid. In order to

the velooity of sound in the minus .-.direction, our frame of

must have the vel~city u - co In order to move with the velooity

of sound in the X direction,

u + cc,

Equation (27) statee

our frame of refer~ue must have the volooity

that if we start at

and move with a velooity u + C9 we will find that

remains .oonstantn
.

Equation (28) states that if we skrt at

move with the velocity u . c, we will”find that ‘ho

● 00 ● *
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●
.* ●:0 ●** bee ● 00 ● .

any point in the fluid

tho quantity u + a

any point in the fluid and

quantity u . a remztin6
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Thus it we know the velooity and density at all points in the fluid

at some time, these two equations serve to define the valuea of u =.& and

ui-4 at any ~ubsequeat time. And knowing the values of u o 0 ati u + a,

we alse know the values of u and u separately From u and the adiabatio

equatiionof 8tate, we can determine the density and the pressure. This in

pri.nuipleforms a complete solution to the problems of one-dimensional
0

iaen%ropio flow.

It should be emphasized that the Riemann method is only applice.ble

to one-dimensional problems and cannot be generalized to tvm or three dimension?.

(a). Method of Phame~.on in General Case—.

The Riemann metliod oan be used in tho following manner to

Integrate numerically the equations of motion. Suppose that at the time

k = O we are given *he velooi%y, UO and the specific volumeO V, at a set

of points xl, x2, 000 ~0 ‘;!eare also given the equation of the adiabat. We

prooead as followe:

First.we use the equation for the adiabtatto calculate

J(TC(v,so)= g~
o

and then oalaulate

FI’0111V(Xi9t = O) and the above relationships, we determine

.. ● ☛☛ ● 9
9.**

‘:’:-● 000:, ::● O:*
●

● * ●:o ● O* 99* .** ● *

● ☛ ● ●

● ☛☛ ● 00
● m*.*
● 0 90 ● ●
● ● ● 9.* :
● * ● *8

9*O
9***
9*O ●
● **
9,* 9

● *

—

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



‘n

‘?

‘2‘

‘1
I

‘1

‘t--)

In the Riemann method we try to construct the Iinea along WhiCh

n+u-f~ and n - & = gi. Figure 1 shcws what such a mesh might look like

when we integrate numerically. It is easy to find the points of intersection

. graphically. F=Q~ =Ch Poi~~# x~o we draw two lines ono with the slope

u(xi~ t =0) -t’O(xi$ ~ = O) and the other line with the slope U(xi,t =O]-e(xiOt=O).

Along the first line fi remains constantP alon~ the aeoond gi remains constant.

The plaoes where these lines intersect forma the points X12, X2T0 .O.O At

these intereections~we know the value of f and g.

.
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‘t ‘2X:

Xnowing the valuea of a at the intersection points. we cm determine the

corresponding values of V and of

C and u WO oan again draw two line8.

determine a new set of intersection
#

carry out the whole integration.

C. Then using these new~alues of

through each intcwseotion point and

pointsp etoo And in tiie way we can

It is interesting to notice that by this method we omno% obtain

any information about the fluid motion outside of the rough triangle bounded

by the line f =fl and by the line g = ~. The conditions of ths fluid

motion within this triangle are completely unaffected by the conditions of

the fluid outside of the triangle.

(b). A~emmn’s Method to Ideal One.dimensional Gas,

The

satisfiea the ideal

Riemann B!ethodis Particularly useful when the fluid

)gas form of adiabat~ z

P = Bc(so)py

T) For many appl~cations it is useful to take the adiabat

This does
equations

. P =k*(so)py + Po(so)

not change the resultant fluid motions since the
only involve pressure differences.

For other purposes$
“ptv= b)y = kn{So)

(29)

in the formt

hydrodynmioa 1
“

ia a useful forzw .:. ●O .,.
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And

Since V. ~e arbitrary, it is convenient to set V. = ~~ The value choBon

for V. cannot affeot any physical properties of the fluid. Then

2
u =

()‘yTc

~f y should equal 70 there are many s!mplifieakionswhich

appear. In this case, tho velocity of sound is proportional to the density.

2_ =3. and o==+C. Most substanoe8 under very high pressure
Y-1

approximately follow the ideal-gas adiabat4) with Y-. Ihdor the8e con.

ditions f = u + c is coustant along the ourve whose slope i8 u + c~ and

g= u - c is constant along the ourve whose slope ie u - co Thus f iS

constant along the line:

x =a[f) + ft (%4)

~ This value of 7 iB not to be cm.fused with the tr~ ratio of spooific
heats, y?. whioh varies betwoea $2 and 1. For mplo any substanoe satis.
.fyingthe equation of state pV q~Yv= aT q(Y’-l)%’has the adiabat,

P = (conSt) 0%.. . .
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●
..0

.
And g i8 constant along the line .“: : : :

; ;0 ●

x =b(g)+gt

Solving these equations simultaneously:

.=-’
u=~(g+f)

;0
● *.*
99

The8e four equat~one form a complete Parametric solution to the equations

of motion. If we know

oan determine a(g) and

(?7) simultaneouslyte

of x and t. Knowing

the velocities and denait%ee at the time t = 00 we

b(f). Knowing a(g) and b(f)$ ws can solve (x6) and

determine tho value of g and f for any desired value

g and f we oan u8e Eqs.

u and 02 Then substituting c into Eq. (?1) we get

propertie8 of the fluid motion.

Darboux obtained analytical solutions to

(?S) and {?9) to determine

V and henoe all of the

the equations of motion

for all values of y suoh that y = 2m + ~ mere ~ i8 an integer. TL~60
m 0

values lie in the useful rango of yO The aeoad and third are of practioal

interest representing very accurately an ideal monotomio gas and air,

respectively.

t

m %’

1 3
2 1066’7

104CUJ
~ 1.286
5 10222
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In hi~ solutions for x and t& Ihmb”~ .

●
● e9 *** .* :*’

derivatives of’ a and b up to tho order m - 1.,

(c) Riemann ?JethodAp~lied to Disturbance Coming From One Direction—. ——...—.—

The Riemann method ia partic~larly ~asy when a di8kurbanoe comes

from one direction. Let us suppose that at time, t = 0, the fluid at points

such that x i6 positive is at rest and the fluid corresponding to negative

values of x is disturbed. In this oaso we shall sk.owthat the lines of

constant u + a are straight lines Md all along these lines t.hovalu~of

u and a separately remain constant. We suppose that the fluid satisfies

the ideal gas adiabat so that

a= 2= (401
y-

Figwo 2 illustrates the problems

● 5) These eq~tions Of D~rboux are given in Hadamard, Lecons sw la
dea Ondes {F%ris, 1902). They amount to the &imultan66~~o~
3533.= parametric eqnations:

z‘($-w-’[“”-:’‘a’”A
t ()dz‘ziTo-

()J-&u
Here aa before a is an arbitrary funotion of u + o and b is an

arbitrary function of u - oO
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Figure 2

DISTURBANCE EMANATING FROM LEFT

~fe ~u~t di8tingui8h three regions” In region 10 the fluid is

undisturbed. In region II, the disturbance is aoming from both directions.

& region 1119 the disturbance is only coming from the negative x direotion>

Region I is bounded by the line dx = CodtO In region 1$ u = 00

c and u = 2= coo 7= coo

At any intersection of points in region I such as (x~,t~):

u-a=- 2
co

(~)
y-

f?~u +Cs = +9———— O@)
y.rr o

e.
2

So that u remains zero and u remains — coa Ths lines of,conytant ~ - u
T-1 *.

and constant u + u in this region~ as constructed in the Rie~wI method, are

thereforestraightlines.
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In region lllP the lines of oonstant

8ince all of the lines of constant u = a which

ohnracteristiovalue, u . a = . ___2 ‘Q . Thus
Yo”~

they interse~t bavo the cane

Iino of’slope u + C characterized by u + a = fi we have:

u-t-a= f’i

w

( 2 CQ
“’~f i-y-l )

The line for whioh u + ci= fi, therefore has the slopes

(46)

(47)

Sinoe this slope CIOOS not change throughout region 1110 it follows that the

lines of conataut u + u are straight lines. St is important to note tha%

the lines for different values of u -t a = r~ have different slopes, If

%WC1of these lines approach or intersect each others the pressure gradients

become large and then infinite and a shock wave occurEG ‘i’hoRiemann method

is no longer a~plicciblewhen those lines interseot.
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In region 111, the Iinee characte~istic of u o u have the Qlope

{48)

Sinoe these 1inea cross linen having dlfferent values of fi, it follow~

that the lines of characteristic u . a mky bo curved in passing through

region 111.>

the shock

(d) Formstion of SftockWavea”(%oblemof a Moving %Zl).-—.. ——

The formation of shook waves oocurs quite generally as the

a~y disturbance in a gas~ E the disturbance is mild$ it takes a

time for the shook wave to develop; if the disturbance i8 violent.

wave form in a short time. The Rionsmn method can be used to

show how they origizm%.

Consider a wall or piston which is set into motion at time

t = O amd pru~gntef} a di8tUrban00 in tie gas in front of’it. The position

of tho mill at any time is given by the relation.

.= ‘i?(t) t>o

For the sake of sinpIicityO let @ re~trict the motion of the piston to

subsonio vek;i:iou~ In tlda case only the lines of slope u -kc can come

~
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thewallo Figure3 illustratesthe Pr~~le~~“ Th~ l~f&”~f oonstant u + a

are ahown~

Figure q

Initially the gas ie at rest and has a velocity u = O as well as a constant

veloclty of sound, c= coo We suppose that the gas satisfies the ideal=gas

20adiabat so that a = —
.Y-l 0

the line &x =co dte

On the surface of the

wallsu - a = .
.?%?

TO the

wall u

~ sinoe

Aa in the previous problem we can aonstruct

left of this lines the gas remains undisturbed

= dw
a%

. At any point on the surfaoe of the

the linee of constant u . a arise in the

undisturbed part of the fluidO Thus on the surface of the wall:

(49)
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(9)

Therefore~ whenever

in the neighborhood

~ i8 po8itive@ 2> co and the dens iky of the gaa

of the wall is inoreased~ if ~ is negative. the gas in

the wall is attenuated.

lying to the right of the line dx =co dt and abovo the

the fluid in region 111 of the last problem. We therefore

of constant u + a emnnating from the wall aro 4raight

the neighborhood of

The fluid

wall corresponds to

know that the lines

lines. A line starting from a pointO (x$O to), where ~ is positive

and small will have a slope, u -i-COless than the slope of a line starting

froma point, (x”, t“). where dW f6 largero These two 11.neumust
%Z’-

thereforo meet at some point (XQ?Y9 tgv9)c. Since these two lines have

different velocities of sound, they alsohave different densities. So as

they approaoh each,other a progressively sharper density gradian’tdevelopn.

This gives rise to a shook wave and under such aonditiona the Riomann method

is no longer valid. From the abovee it is clear that the less the piston

or wall ie aoceleratede the swller will be the difference in slopes of the

lines of oonstant u + a and the longer time it will take f’ortho lines

to come together to form large density gradienta and shook waves.

From Figure ? and Eq. (~) it is clear that:

1, Whenever the piston is accelerating the lines of constant u

tend to come together to form shock waves.

2. Whenever the piston is deoeleratin.gthe lines of constant u
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tend to go apart and not form shock ~$$s~

Those are special oases of the more general

formod (alwayswill bs, if given sufficient

not when it i6 being rarefied. In order to

theorem that shook waves tend to lm

time) when a gas i~ compressed W%

get shook mves~ it is not

necessary for there to be a discontinuity of the motion of the wall.

shofk wave formod in cormw

Consider the following examples illus-

trated in Figura l+,

(a) {a) Push piston into gas euddenly~ (M

shock wave immediately &t wallo

(b) Push piston into gaa gr~dually. ‘-~
x

shock waveIlater.

(e) Withdram piston suddenly from gaa.

?loshockwave is formed. Pressure and

den$ity gradients ge% 1e88 steep M you
(0)

go into gaa.,

Figure ~

..
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I~o SHOCK wAVKSAND DISCONTINUL~?:~&!
~ectu.re by J. von Neumanq : : :

*

●0 ●
● 0●:0 :.0..

(6). HUGONHYI‘S EQUATIONS FOR SHOCKSo

There are two dii’ferent types of discontinuities in a fluid. In the

firot kinds there is no t’lowacross the boundary and there is no pressure

dii’ferenoeon the two sides of the boundary. In this case. the boundary ia just

a streamline separating two phases of fluid whioh may be made up or different.
.

chemical substances or tine

densities on the two sides

continuity in which we are

uame substance but having different temperatures and

of the boundaryg etc. However~ we kind of dis-

most interested involvee the flow of material across

a boundary in which a sharp change in pre~sure~ dezwityo and velocity take plaoc~

These are ualled shock waves or detonation depending on Whether the equation of

state of the material remains unchanged or whether chemical reactions take place.

Let us postulate the existence of a plane shock wave and examina the

●
6)conditions of its propagation . First we must define the following quantities;

v a Qe].ocj.ty of shock WaVO

Dl$u= velocity of matter before psssing through shock wave

D2 + U == velocity of fintter after passi~ throu~h shook wave

pl??2= density of’ fluid before antiafter p~ssing throu;h shock wave

V1 , V2 = speoific volume of fluid before and after passing through
shook wave

P1 o P2 spressure before and after passin~ throu@ shock wave

Elo% =specific internal energy bGfOr8 and after passing through
shock wnve,,

M= mass of material per unit cr(ms-sectional area flowing throuGh
the shock wave in unit time.

C) G.I. Taylor’s article in tirand’s Aerodynamics (Springer 1935). Vol. 111,
page 216 has an exoollent discussion of this topioo
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Shosk
wave

In order that this discontinuity oan exist we must satisfy the follow.

ing equations~

(62)

(1). conservation of matter

%91 = D2?2 = M

(2). conservation of momentum

M(D2 . Dl) =P1-P2 (m)

‘fhis ~ises from Newton’s equation. Consider the mass of fluidp MD

● passing through the shook wave per unit area and unit tima as forming a partiole.

Here PI . P2 is the farce pushi~ the partiole through the shook wave and

M(D2 - Dl) is the rate of change of momentum

(3). conservation of ener~y

+M (D;/2 + E2) - @/2

of the Pa.rtioleo

+

This equation simply states that the

per unit art)and time9 i. es D~P~ -=D2p2, is

El) = DlP2 - D2PZ (54)

work which is done on the fluid

equal to the rate of ohange in

its energy. Here h&/2 is the kinetic energy and blIlis the internal energy

of the fluid passing through the shook wave. Beoause of the equation of sonser.

vation of momentum, we would get nothing different if we considered the absolute

velocity of the fluid rather than its velooity relative .tothe shook wave,
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Mom the equations for conservation.;~&os~”aa~ @r &&sntunI, Eqs.
●.. .**●*

(52) and (S3) it follows that

(55)

(56)

For weak shooks M

From the equations of conservation of matter and energyg $qG, (52)

But by virtue of the equations for

Thus Eq. (57) becomes

(1/2) (Pl - pJ (V2 +~3) +E2 “ ~1

or rearranging
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And therefore

(P1 + P2)# = (E2 - E~)/(VI - ~2)

FOr weak shocks p = . (@E/@’?)~ and the @rOPY On b“~h sides

~ve becosnssasymptotically equal.

((w) .

(7), BEUAVIOR OF ENTROPY. WJXIWRETATION. THE RAYLLIGWTAYLOR THEORY

The oharaoteristios of shook uaves oan be seen more olearly ii’

‘?]
oonsider the speoial ease of an ideal gas. la this case:

E = pv/(ti.1)

Therefore E~61) beoomest

Or rearranging

It is convenient to let:

?) For an ideal gas, pV = RT, Cp - Cv = R. and C Cv = ~J

(62)

(63]

(65)

(66)

shook
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This equation is called the Hugoniot shook adiabatioO although this is obviously.—

a misnomer because entropy is ohanged in passing through the shook.

If the shook wero weak, $would be almost unity. It i$ intQreSti%

to expand Eq. (67) for ~ irkpowers of ($- 1) $

(68)

Thie series for ~ agrees khr~gh ~~leterm in (~ 0 1)2 with the corresponding

series expansion whioh We would got for Me ~omPression ratios 7 no Shookg if

we allowed the fluid to pass gradually from the region of Pressure PI to

+(1/62f) (1- 1/$] (2- l/f) ($- 1)3 - 000, (69)

Since Eq. (69) corresponds to the adiabatic with no change in entropy, it is

okwir that some entropy ahange muet take place in a shook. The faot that

Eqs. (68) and (69) agreo so well corresponds tO the fact that verY ~ittl~

entropy change takes plaoe in a mild shook. ,

For violent s!~ookwavesY where P2/P1 =~ islarge, the compression

(h) ~f41)/(M - 1) (70)
large lj

This limiting value becomes larger as tibocomes smaller. This iS

seen in the following tablet
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The faot that the oosnpressionratio oannot oxoeed a fixed value in passing through

a shook, is quite oontrar~ to the behavior of fluid whioh pass through the sane

pressure drop without

The entropy

pt38f3il.lgt%rough

of an ideal gas

S=(jv log (pv%’]

Therefore the ohange in entropy in

●

As=s~-s~=cv

= $Cv

+

shookso

oan be written

‘o

in the form
8)

(71)

passing through the shock wave canbe Written$

The ohange of entropy is always positive if the fluid flows fl’oma region of.,

low density into a region of higher density, i.e. ~ iS greater than unity. For

this case ~ is also greater than unity and the fluid flows from

pressure to a region of greater pressure. For weak shookss the

is very small as we can see by expanding Eq. (72) with the help

a region of low

ohange in entropy

of Eqso (68)

and {69).

(73)

.

r 1A s=~cv~og ~+(@~) (l J\f2) ($. 1)3+”00

= (cv/12) (1 - l/d) (g - 03, + 000

This entropy change is negligible unless ~ >2.

.,

8) P.S. !3pstein,“Thermodynamics” {John Wiley, 1937), p. 63, Eq..4.19
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The problem of

in this field because of

served in the shock. We
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shouk waves was most &x~”si~~ t? *C ~~ly workers
● 0.... ● m

,**●** ●9
the uncertainty as to whet;er entropy should be oon-

now know that it is energy whioh must be oonservedo

and we are not greatly concerned ova the faot that the entropy okngeso EouO

ever it is always neaessary for the

a direction as to inorease entropy.

wave, MATTER FLWS FROMA REGIOl!lOF

fluid to flow through the shook wave in suoh

This means that in flowi% through a shock

IAN DENSITY TO A REGION OF HIGHER DENSITY,

NO SHOCK WAVES ARN POSSIBLE WHEN MATTER FL@VS FROMA DENSE TOA LESS DENSE

REGION, sinoe this would oause a decrease in entropy. After pssiw throuh a

shook wave, the fluid becomes hotter tinanit would if it had arrived at the

same pressure without passi~ through a discontinuity.

Shooks are connwted with the nonlinear oharacter of the hydrodynamicml

equations. In simple physioal terms, they may be attributed to the fact that the

velooity of sound is not a oonstant, but inoreases with the pressure. Suppose

we produoe a pressure wave moving in the X ctirexxtion.This situation is shown

in Fig. 5. The regions of high pressure

at the top oi’tho wave travel with a

velooity greater than the velooity in the

pressure troughs. The front of the wave

gradually gets steeper and the back of

the wave gets less steep. After sufficient

time, the wave front gets infinitely steep

and a true mathematical discontinuity is

x-?

FIGURE 5

present.
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Shook waves ware discovered in lf160~dy~.e@n~ $&y!&re redis.

●
● 9

●* ●O* ●9
oovered in 1890 by Hugoniot and forgotten again. Finally in 1910 Lord

Ray3eigh and G.I. !hylor started the investigation which has led to our present

treatmant of the subjeut. They were very muoh oonoerned over the appearance of

a mathematical discontinuity in the fluid motion.

the conditions in the fluid in the neighborhood of

no longer negleoted heat oonduotion and visoosity,

for the

rapidly

nose of’

They made a careful study of ,

the shook wave. When they

they obtained a finite width

shook-wave in whioh the pressure and density of the fluid obanges very

but not discontinuously. A mild shook wave, suoh as in Nonk of the

a bullet9 has a width of the order of 10°4 om. For a violent shook, the
. .

width is much’less.

(8). COLLISIONS BETWEEN GAS MASSES

One of the best examples of one-dimensional shocks is the oollieion

● between two gae masses. If the two gases are initially at the same pressure.

at the time of impaot there will be formed two shocks waves, one in eaoh gas.

If the initial pressures are unequal, there is the possibi.3i%yof the shook wave

in the high-pressure gas being replaoed by

the pressure and the velooity of tho gases

Ebwover, the density of the gases need not

i.nterf’aoe.
.

Iu oaae tho initial pressures in

ie a oritioal ratio of initial pressures.,

a rarefaotion. After the oollisionO

a% the interfaoe must be continuous.

be the same on the two sides of the

the two gases are different, there

If the difference in initial pressures

is smaller than the oritical value9 there will still be two shock waves as in

the ease of equal initial pressures. However9 if the difference in initial

pressures is larger than the oritical value. the shock wave in the high-pressure

gas is replaced by a rarefaotion. The high pressure gas expands at oonstant

entropy and the Riemann method can be used to dat?rui.%$i“b$”~d+t>ons of flow.

9.*

;:::*
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● O. ●::.
●0 ... ●.* : .

●*

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



u
The shook-wave method given

●
the low-pressure gas. The problem is completely determin&i by-{he requirement

that the velooity and pressure mnst be equal on both sides of the interface.

!l!histype of problcm oan be solved but it is usually impossible to obtain any

analytical solution.

Let us consider the eimpler problem of the two gases having the sane

initial pres6ure0 It is ootawenient to specialize still further and let both

gases be ideal and have the same value of’X. However, the gases ~Y h.av~

different oh,emioalaxnpositions and densities. lyesuppose tkt before tho

collision, the pressure, velooity, and density is uniform in eaoh of the two

gases. The gas masses extend infinitely far in the plus and minus X direotione

respectively so as to avoid difficulties arising from end effects. TO realiqe

this experimentally it would

tubes with thin membranes at

at the instant of impact the

be necessary to have the gases enclosed in long

eaoh end. These tubes would be throwR together and

membranes would be removed. The mathematical

ment is muoh simpler.

Fig. 6 illustrates the con-

(Shcx$kwawe)a~ition’~ ‘
/ The problem is to find

velooity of the

INTERFACE velocity of tho

fr
pressure at the

x Er!6PTy

\

,
(Shook wav8)b

6

treat-

the

shook waves~ the

interfaoe, and the

interfaoe.
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The volooity of the shock wave is Va,, W6 oan use tineequs.tionswhioh we dsrived

to oonsidor the conditions on the %WO sides of the shook wave:

‘la =Ula - Ua

‘2a ‘“2a
- Ua

%a = P2JP

7$3 = P2a/Pla “

9)
But fronzEqs. (52) and (~);

(74)

(75]

(76.)

(77)

so that
.

(79)

(78)

f-l
(80)

7J7a - ~) .

.

‘2a i
‘Ula + P/Ph ~ (1/7a) (Ya - 1) (~ - 1) (81)

And f~*omEq. (67)

7a =
[ M“(%1)+(w+1)$

1
(if+ 1) + (~. l)g (82)

Similarly if we designate conditions in gas B by the subsoript b;

9) Notiae the use of the minus sign in the following equation. The necassttY

m
for it $s cleak from l?ig~.6 since tha material in orossing the shook -vep
oontinuesto travel in the negative x direction,. , .
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(84)

(86)

Now we require that the material on both sides of the izrterfaoehas

the velooity us and the pressure p’. The velooity oi’the interface is then

also U$c. Ne shall try to s&\tisfythe equations with tha pressure p“ and the

velocityus for all of the material of both gases after the passage of tha

P“

Thus:

= p~a=pfb

(a7)

(88)

We must then sotie the four equations: (82)9 (86)9 (87), (88)9 for the four
.- .

uI&llOwZIS& )aS ~bs Yb “ From Eq. (88) it is ’clc?arthat

substituting this value of ~ixxto ?lqs.{82) and 486);

(89)
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Rearranging !Zq.(91) and squaring both sides of the equation:

Or making use of Eq. (90) and letting

[2(~0 1)2 = B (3’-1) +

● But Eq. (94) is a simple qudratio

~= l+ (B/4) (~+l)t

(92)

1

(~+ 1)3]( (94)

equation for~ having the solution;

~–-
Bti+ (B2/16) (xi- 1)2 (9s)

00
●

●

● :

●

● m

::
● 0
● *
● 0

Sinae B is always positivo, both of the roots cd’Eq. (95) are real

and therefore mi~ht correspond to solutions of the hydrodynamioal equations.

However, if we took the negative sign for the square roov,~ would be less than

unity and the entropy would decrease when the material passed through the shook

waves. This is obviously impossible so we must use the positivo sign. All of’

the properties of the oollision process are then completely determined.
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Lectures by von Neumann and Peiefl~ “. : :. :..~o:
and Report by Fhchs

(9). STATIONARY TWO--ANDTHREE-DIM3NSIOIUALIFL(YNS. AV@RTICITY. BERNOULI.J‘S

EQUATION.

The problem of two-and three-dimensional flows are considerably more.

diffioult than the corresponding one-dimensio=l ones. Two- ad three-

dimensional problems must be treated by speoial methods which are applicable

only to a limited olass of problems.

In veotor notation, the equation of motion is

and the equation of continuity is

Here u is

involving

of vortex

(96)

ap/iws. v o (Py) (97)

the velooity.

F1OW problems naturally divide themselves into two olassesz those

vortices and those whioh are irrotatiorial. Only a limited number
.

problems oan be solved and we will not consider them here. Whenever

a fluid has a vortex~ its angular velooity, (~, is different from zero in some

region. Sin.oe~= (1.lz)v%2$ the requirement that there be no vortioes is

equivalent to requiring the curl of the velocity to be zero. But any veotor

whose ourl is zero is the gradient of a scalar. Therefore we can set

u_=-v$ 3XROTAI’IONALFLOTf (98)

Here f is oalled the velooity potential.
.-

If a flow is initially vortex-free it will remain vortex-free if

the pressure is a funotion of the density alone. Therefore there will be nc

1

-: ::!
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vortioity generated as 10W, as the flow remain~ isentr~pfq.” Bo3fi%Q&J%

shoek~ will change entropy in a nonuniform manner and vortioas can be foryed,;

,4plane shock is essentially a problem in one-dimensional flows and does not

produoe vo@icea. Howevex~ Hadamard showed that any shocks exoept those

having either plane or spherioal symmetry produoe-vortices. l%r examp~os

vortioes are formod when two plane shooks oollide.at an angle.

The three ucalar equations corresponding

motion oan be reduced to one equation when we make

tial for irrotational flows. Eq, (96) becomesz

to the vector ~quation of

use of the velooity potezw
.0

- (a/at) @ + w(Yo@l =- (1/P)~P (99)
●

or inverting the order of differentiation for the first term~

-~@/dt) +V(grad ~)2/2=- (1/p)Vp (100)

This is equivalent to the equation

-d(?@3t) +d(grad ~)2/2 + (1/p)dp = O

And integrating along any path

(NM )

J“dp#’p = &$/’& - (1/2) (gred~)z +(1/2)~ (:02)

Herenis the oonstant of integration. For a steady stated b~/dt x O and we

get Bernoulli?s theorem:

fiP/P + (@) (zred ~)z = (1/2)~~ (103)

Here ~~ is a constant whioh canbe determined by knowing,the velooity “

and pressure at some point in the fluid. Usually~f is evaluated from the

pressure at a stagnation point where the fluid velocity is zero.
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For an ideal gas, wa can evaluate ~/dp p and obtain an upper limit

to the velooity of the flow:

$P/P=[tk(so)2/K/(f-li P~~-l)/f=[rk(so)/(f-ljP~O’ (lo’)

But the velooity of 8ound, a, is given by

.= J“-;. = @i@=--- (M)6)

And Bernoullits equation becomes:

Ha-e 00 is the velooi%y of sound at a point where the flow velooity is sero.
\

The equation of continuity is also important. If we introduoe the

velooity potential into EqO (97):
.

(109)

●

For a steady state, ap/& = O and

Sometime6, the welooity potential may be determined in the following

manner. The density is eliminated from Eq. (110) by making use of the implicit

dependency of J’/dp p on density in Eq.(103). ‘l’hisleads to a single differ-

ential equation involving
I

alone. The equatig~i~”~ry~o$pl~j~ted and
?OQ ●**9

● 0. ● **
● e. ● 00.
●**.: ● ●** .
● 9. ●0: ●

::0● * . . . . . . ● -

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



● ✘ ✎☛✎ ● ● 9

--s9 .=’
● m9 ●“e:::o
● 8.*** ●

● 00 ● O*

● ** :*:

● :ooo
●* ● ●*

nonlinear. When the effect of compre6$ibilityis mna.1”$,it~is ~s~j$$$to Use

●
✎

this equation to obtain good approximations for the v~looity poten}ial.

(10) STATIONARY TWO-XUXENS1OI?ALFLO’’YSSNOZZLE FLOWS. “

The stxdy.state flow through a nozzle provides one of the simplest
,

examples of the use of the Bernoulli theorem. Consider a well-tapered (Laval)

nozzlelO) attached to a large chamber with a large oross-sestionalarea. sup-

pose that the gas in the

at any point is given by

u.= 0“

PQSPO,CO

Throat

Fig. 7

chamber is at rest. then the velocity, U9 of the gM

the Bernoulli equation (108)\

u’= [m-q[.:-a (108) -

.

But C’ =2fk(So)pK-1 (lW-)

And p. = k(So)p~ (104)

so that

( f--l)/ff
02 = (fpJPo) (P /Po) (ill)

.

Therefore Eq. (108) beoom~s~

(112)

However the rate of @ss flow through any cmoss seotion S of the nozzle, M,

must be the same at any point in the nozzle. Thus~

M = SpUS oons~nt

So uombining Eq. {112) for the

U = SPO (P/Po)
1/$

(113)

volooity with Eq. (104) for the adiabats

10) One of the best references for nozzle flows is Stadola and Lowenstein~
.

“Steam and Gas Turbines” (McGrs.w4iill,1927) Vol. 1.
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This equation gives tho oross-sectionalarea as a funotion of the expan~ion

ratio. . E

Figure 8

Then

[2-~f’’’ri’S =(oonstant) y

The conditions at the throat are

particularly interesting. Here the

orose-seotional area~

P/P. passes through a

a funotion of

minimum. IQ

order to find the conditions at the

minumum, let Y = (P/Po)l+r.

At the throat (use subsoript t to designate throat):

Therefore:

iienoea

Substituting thiS

by the relation:

(117)

(119)

ratio into Eq. (108), the velooity at the throat is given
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The density at the throat is given by the adiabat:

.

Using the

%h. = p(ti+uir1’(’”’)
perfeet-gas equation, the temperature at the throat is given byx

T~To = 2/(r+l) (122)

The above equations appiy until the gas has overexpanded so that

the pressure in the nozzle is less than the external pressure. Under these

conditions plane shook waves may be expeotmd (see Frank J. Nalinao J. Franklin

Inst. 230, 433 (1940)).

● If the nozzle has too large an angle of taper (usually over 300),

the gases do not completely fill the nozzle and therefore do not expand as

rapidly as might otherwise be expected..

If the nozzle is not +apered sufficiently in the neighborhood of the

throat, the effect of the turbulent boundary layer becomes important. Von Karman

has shown b’cththeoretically and experimentally that under such condition the

boundary layer varies periodically along the nozzle and gives effectively a

succession of constrictions,and the gas sufi’ersa series of plane shocks in

passing through this region.

The problem of gas flow through a straight tube is aceedingly compli.

cated. In this problem the flow is determined bythe friction due to turbulence

in the boundary layer along the surface,, In Eassing through the tube, the gas

● periodically overexpands, suffers a shook wave~ and expands again. (see W,,

.

Fi=gssel,X.A.C.A. Technical Memorandum No. 844).

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



me 9** s **
● ** .4; ●** ●

#**m e

.42-
● O*

● *e :0 ●O* a
● *vee

●
(11). STATIONARY TXO-D13ENSIONAL FLOWS: CORNER FLOWS~”:OB~IkE &&S;C:—.

HEADWAVES OF WEDGES. INTERPRETATION. PITOT TUBE.

lJsuallywhen a two-dimensional flow traveling with suporso~io

velocity oollides obliquoly with an obstaole. it forms an oblique shook wave;

This is evident in the photographs of bullets in flight (G.I. Taylor has an

excellent artiole on this subjeot in Durandls Aerodynamics. Vol. 1110 p 236).

The shook wave is a plane discontinuity with the material flowing through it

obliquely. In discussing the flow, it is convenient to oonsider the shook wave

as fixed and the gas moving obliquely through it. By superimposing on tho

whole system a velooity parallel to the shook wavep the problem oan be reduoed

to the one-dimensionalflow through a fixed shook wave. This type of shock

wave cannot oocur when everything.:is continuous. For example,

waves are formed on tha sharp point of the bullet nose.

those shock

problem-of the● Fi:ure 9 illustrates the

oblique shook. The fluid hits the oblique shock

P~ at the angle a

We assuv.athat

x+ %. This has as a result that v , the 00mF($nent

and departs with the angle ~.

11)
the pressure is only a function of

#-

/
of velocity in ths Y directions is constaat~ As

Hfl
? usuals we consider only the problem of the steady

Y’
state. In this case, Bernoulli~s theorem is valid

Figure 3 for the flows both before and after the oblique
,

shooko If we let u be the component of velooity

in the x direction, w be the total velooity and

reserve the subscripts 1 and 2 for the flow before and after the shook waveg

11) The equation of motion for %’ i$ &/& +U dv/dx = 0= But for.a steady
state, b/& = o so ‘chat&/&= O and v is a-c~n~te~~t~”:”:“”:“.
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U1 = WI cosa

‘J = WI sins

Eut

VI = V2

And from the oon~ervation of matters

‘2 = W2 sin~

so that

● ☛

● m ..0 .OO : .09 ●
● *.
.0

bb
. .

(126)

tan/? = +2 = O@@ P2/’P1 = (P2/pl) tana = 7 tam (127 )

‘l’herest of the solution proomds much as in the ease of the plane shock6.

(128)

So that

Eut aocording to tho perfect gas adiabat

C2= (13p/q3)~o = xP/P

‘And therefore (making use of Eq..(124)):

Just as in the ease of the normal plane shook,

Or solving Eq. (132) for~

(131)

(132)
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5 = [7(W) -(~- 1)]/ [(=14 =;7(%- 4:” :; ( 133)
.: *C: .% :.0 ●=

Substituti~ this expression for 3 into Eq, (131)

200s a

(134)

(3.35)
.

2 + (r - 1) (wl/@2 COS20.

AS in the case of the normal plane shooks, the fluid must flow

across the shook in such a direction that p2 is greater

increase in density remains finito no matter how strong

strong shook, ~ = (ti~ 1)/($=. 1). Thus makin~ use of

we find the following an~les of deflgotion for

..

a

~o

15
30
45
60
75
90

P I +a
—.

I

0° 0°
58 43
74 44
80 35
84 24
87 12
90 0

a strong

than pl % alsog the

the shock, For a very

Eq. (127) and $= 1.4,

shook in air:

It is clear from the above table that the deflection, ~. c, can-

not exceed some maximum value. If the dgfleotion is greater than this~ the

disturbance aannot produce a stationary shookg “;~ecan find this maximum angle

of deflection for a given value of the initial volocitygWa Y and initial

velocity of sound, o~ , in the follo~i~: manner:

d.ifferentiatin.;both sides of Eq. (127) with respect to a

-
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sec2P
Subtracting seo2~

seo2/3

13u+the condition

d(z - a)/da = 00

3 ‘“”“:”i:”(h)d#da f=tan a d7/da + ~~;e-. q* .0.:ae::m: ..bm

from both sides of’this equation

d(&% a)/da =tm a d~/da + 7seo2a - eeo2A

that ~- a should be a maximum or minimum is for

(137) -

Making uso onoe more of Eq. (127) to ~liminate~, the con-

dition for# . a being a maximum becmnes;

o = tan a d?/da + ~seo2a - 1 .$tan2a (138).

And differentiating ~ in Eq. (135) with respect to a keeping Viland 01 constant:

Substituting Eq. (139) into .Eq.(138) and solvi~ for tan2a ~ the oondition

●
for the maximum deflootion becomes;

tan% ==

Thus for air with & ~ 1.4, we

fleation:

9.

1

2

3

4

5

6

get the following conditions for maximum de-

tan2a

c)

.273

.222

0204

.184

.167

(wJc#

1

3018

6.11

12.05

29.6

~ -a
—..

o

19°400

29°30q

37%o~

41°50Q

I 46°
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For air, ~ = 6 is the greatest compression wh~u~ ~a~”be >!I&~O~ with the

●
.* .0

strongest shocks.

The abo~e treatment was first made by Yrandtl and Mayer. This

analysis may be applied dir~ctly to the problem of

wedge, After the shockp the Gas moves parallel to

Therefore the deflection, Xj - a j

This is shown in FiOnr9 100

Figure 10

3.sequal to the

gases fled.ng past an ini’inite

the surface of the wedgiS.

half angle of the wedge,as .

On a photograph, such as of a bullet in

flight, the angle, ~/2 . a, that the shock

makes with the wedge is clearly visible..

Knowing both # - a and a. we can get the. .

compression ratio. ~ , from Eq. (127)”and. .

then the pressure increaso,~. from Eq. (~33).

Knowing the incident pressure and density. ,

we got U1 from Eq. (130). Thus we oan obtain

the velocity, wl,of the gas with respeot to

the wedge from Eq. (134). This then com-

~rises a oomplete solution.

If the wedge is infinite in extent~ the oblique shock waves remain

attaahed to the point of the wedge until the maximuinvalue of~ ==a is reachad.

However, von Neurcannhas shown that if the wed,:ois finite, the shock waves

detach themselves from the point of the wedge when w2/c2 = 1 . This oondition

is reached for wedges with half angles one or two degrees less than the maxi-

mum value of fl- a . Figure 11 shows this situation. lierethe solution is

stationary and the headwave rer~ins a finite distance in front of the wedge,

the smaller is the breadth of the wedge, the farther the headwave remains away

*
~fromthe wedge. #CJcan find the ang~~ for which W2 ~=00 in the following mmner,A’me●*9 ●0

‘~~
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Figure 11.

9*- 2-N=
‘%-”z 2 (P1/P2)2 u: +V:

[141)

= (1/~2 + tan2a) iV~cosza

But from Eqo (130),

So that using Eq. (134) and (133)

(142)

[ 17(Y+1) = (%-1) 2

Therefore the condition that iVQ = Go be~gmes:

(%0 1)2 - 277f(Y+ 1) +yz(% +:%. 1)

tan2a =

[

(144)

2’# (Y+ 1) - (y= l)qj

If the velocity past the shockwave, W2 , is less than the velocity

of sound in this region, c~ , the disturbance at the far corners of the wedge

tra~nls baak towards the point of the wedge and affects the shook wave, oauaing

the detachment. For a finite wedge~ the situation indicated in Figure 11 holds

for angles larger than the critical angles. For an infinite wedge having a

half ansle greater than the maximum~. a , the head wave beoomes detaohed and

travels back through the fluid. This gives rise to a nonstationary solution.

The problem of headwaves for coniCal wedges (projectiles) has been

treated by Taylor and Maocoll, etm. ‘l’hephenomena are similar to those for

:’~
● * ● Q* :.0 ,:. :.. Q.

● e ● *O 9 ●:0- ● ● ● ,
9*9
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●
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wedges but the analysis is considerablymore diof$i~l~ be&&e ih% t30naitions

●
.* .. ●9* ●.

of pressure, density, and velocity ciowlstresmcan no longer be constant and

satisfy the equation of continuity.

Pitot tubes are designed to measure tha velocity of a gas f].owin

terms of pressure. Effectively they form a wadge with a and ~ equal to zero.

A tube extends from the gas stream %0 tinepressure &%3e. ‘fhetube is constructed

so that the gas velocity at the pressuro gage is effectively zero. The con-

ditions at the pressure gage (which we shall designate by the subscript 3) aro

related to the conditions just in back of the shook wave by the Bernoulli

equation;

(1/2) u: =

But the conditions at

[VW] (R@ [ 11- (P2/@@)/ti (145)

the points 2 and 3 satisfy the same adiabat so that

l/%-
P3 = (P3/P2) P~

Substituting this into Eqe (145) and rearra@.ng:

(0 /p p-w=
‘3 2

I + ~ti.@fJ u;P2/P2

(146)

(147)

hat according to Eqse (126) and.(129):

So that Eq~ (147) baoomes$

(149)
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After multiplying both sides of the equation by

and taking the ti/(z#-1)root of both sides of the equation:

(151)

Where $ is obtained from Eqs. (133) and (135) after setting a = O :

(152)

\

Thus the pitot tube measurement of p3 determines the gas velocity~ w~ , if’ “

the initial pressure and density of the gas are known.

(12) ~TATIONARY TWOOIIIMENSI.ONALFLOWS: FLOW AROUND CONV!ZKCORNER(RAREFACTION)

The supersonic flow of a gas around a

ra’’ef’aotioninstead”of a shook. Figure 12 shows

constant pressure, density and velocity until it

the disturbance from the corner first reaches it.

convex corner leads to a

the flow. The gas maintains

reaohes the line 00° where

The streamlines turn

radially about onet~Qrner and then become parallel to the new surface~
I,---●9

, %’ Originally the pressureO
; ‘v”, j?

~-’ \,S,$u
P9U19133 i density, and the velooity/

/’t /

~\

..%” ‘,*II
1, uniform and they beoome uni-

---,--- $
0 form again after passing

“$
‘-e
*.

\ through the rarefaction.

almost

are

Figure 12 \
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It is convenient to use polar coordinates wit~”$h~ c~rne~c~.e”~%er for this9

treatment and we shall let u be the component of velooity perpendicular to

the radius vector and v be the velooity in the direction of increasing

radius veotor.

The

Mach angle,

The meaning of

turbance at O

line 00° is at an angle, ~. = f/2 . ~ , whereyis the

.. sin ~ = ol/ul

the Ihch angle is olear from Figure 130 The rarefa~tion dis=

travels with the velooity c1 , it is swept dovmstream ‘with

the velocity of the fluid, U1 , Therefore, the farthest upstream it can reaoh

Figure 13

In rectangular oeordinat.es,the equations of motion and the

equation of continuity for a stationary flow may be written:

~ %/~ + Uy aux/dY = - ( l/p) &@x (153]

(155)

Here we have let Ux and u be the velocity in the x and y directions
Y

re8peotively. In order to express these equations in polar coordinates. it

is neoessary to set:

●
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● ● :

●e ● ● ● Q9.:*:009*

● m 9* ● *9 ● ●● .*:.* ● ● ●’.
● m. ● ● 90 9
● Oeb* ●
9** ● 0: ::0
● 0 ● 00 ● ● ● . .

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



‘Y
==~sine+vc0t3 e

i3/ay= 0080 b/th - (l/r)sin # d/dO

.

From these relations, we obtain:

(157)

(158)

(159)

u &/&r + (v/r) &J&3 o v2/r = - (l/p) bp/~r’ (160)

u bv/dr + (v/r) av/6e +uv/r = - (1/pr) bp/M (161)

d(pur)/dr + ~(pv)@3 = O (1.62)

These equations may be greatly simplified by the assumption that

the velocity, pressure, and density in the rarefaction region are functions

● of a but independent or r . The only neoessary justification for this

assumption is that we oan satisfy all of the equations

solution of this type. The equation of motion and the

then become:

(v/r ) &I/W . 4/, = o

(v/r) av/ae + uv~r = - (l/pr ) dp/3Q

W + d(pv)/af3 = o

Furthermore:

L3p[afl= (bp/i3P)bp/i3e= 02 dp~ae

and obtain a formal

equation of continuity

(166)

(161’]

(162’)

(163)

The Eqs. (160~), (161’), and (162?) therefore reduce to:
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:000
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h/se = v

[ 1v av/ae+u = . (02/P) 3p/se

[
v u + bv/d* = - (V2/P ) bp/ae

In order for EqsO (161~~) and (162”) to be compatible,

orav/M+u=oe lfav/’a Wu=o , aacording to EqO

(161”)

(162”)

+
v = . 0 or 3p/N3 = O

(161’ ) it would

follow that bp/bQ = O and the pressure would everywhere be tho same. Similarly

if ap/t3@ = o B the den8ity is everywhere the same. Neither of these casez .

oould be generally applicable. Therefore we conolude that

From this it follcws that

( l/p) t3p/&3 = pwij(VV) ~vm

(164)

‘(165)

And Eq. (162”) beoomesx

u -t&/& = . [ywj ~v/~G (166)

Taking the derivative of both sides of this equation with respeot to Q and

making use of Eqo (160”):

The solution to thi8 equation is

v F“r--=.=A (ti-1)/(b-tl) Sln (f-1)/(2f+l)

(167)

((? +6)

(368)

Here A and 6 are oonstants of integration to be determined in the following

be ● 0 ● *9 ● ●
● ** ●o* ● ● ● ●**
● *a ●
● ob,

● ** .
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manner ~ Aocording to Bernoulli~s equation

is given by:

In tha original flow, the constant

L

(169)

~. is determined by the relationz

(170)

[2/($.1] 0: = g +- @fOl] 0:

And sinoe’v = -o s %0 (169) becomes

Substituting u and v from Eq. (168), we get

~2 =202J(6.1) =U; + 20;/(~-1)

(171)

(272)

.

(173).

To evaluate 6 , we set v = -cl when (3= 00

The ohmge of the pressure with angle

manner. Fromthe adiabat and v = - c

V2= 02 {3-1)/$
= ~: (P/PJ

So that

(i.l)/2t’=
v/(v)* = - v/ol = (P/Pi)

o

[
sin J-i (.+ 6) sin1/

(174)

may be determined in the

we obtain:

(175)

JGm7’m3((30 -+Jj)

Wi&ii.u
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For very high velocities or sharp angles ;”$hg .f$uid~f$sw$~ot
● 0

●

follow the oontour of the corner and the flow forms a free surtaoo. The slope

of tho velooity must ohange gradually. This slope is given by tho expressioc~

‘Y x
-U sin e + v 00s e

=

u
% u00se+vsinf3

(177)

sin Q 00s @3W5 (0 + 0[-3 .0s * sin j- (9 + 6)

If the oorner goes from a surfaoe which initially has the slope zero to a

surfaoe whose slope is dy/dx = - m , then 9 ohanges from E30to the value given

d
by Eq. (177) if u u= is set equal to -m . After this point, tho pressureO

velooity, and density remains aonstant.
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RUEYJCT ION OF SHOCK K2LVESFROM A RIGID WALL ●“: “ “
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(Iy)Q
:000
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The reflection of shock waves from a rigid wall and the

collision between shock waves are important phenomena whioh lend themselves

to direct experimental observations~

wavee from a rigid wall is often used

shock waveso Figure lk shows suoh an

9

refleoted shock }

For example the reflection of shock

to measuro the velocity or pressure of

experimental setup. The angle of

wave

\ P....”..... . . . .. ..

.-

/

Figure lb

the refleoted shock wave tells

the velocity of the blast wave

if the pressure behind the blast

is known or tho press,ure if the “

velocity ia knowno As the blast

pr0gresse8 it traveln acroas the

plate. The phenomenon 5.8thero-

forenot stationary with respeut

to space~ but it may be station.

ary with respeot to a co-ordinate system traveling with the blast wave.

Blast
Reflected

(

Wave
Shock Wave Ii

Figure’1~

Suppose that the blast is sufficiently far away from the

plate so that blast wave presents an essentially plane front. It strikes

.
9
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●

●

● the plate a% an angle n/2 - a. If the blast

the b’J.astwave will travel along the plate with a velocity dsk aO ~ t~~

~o.ordinate system fixed with respect to the blast waves the material in

the undisturbed region, 1, has the velocity - U/sin a parallel to the

surface~ and of course the initial premsure and densitya pl and PIO The

fluid is deflected along straight lines towards the surface in region 11,,

A reflected shock wave reotifies the flow and

region III onoe more parallel to the surface.

of passing through the original blast wive by

results of passing through the

u8e the subscripts 1, 2, and %

Let us suppose that we know U,

reflected wave

makes the fluid motion in

Let us dceignate the rersult~

unprimed letter6 and the

by primed letterp; also, we

/’L:
ko designate conditions in th three regions.

Py~ and Ple Then the conditions in region 11
.

are completely determined Setting WI = U/sin e, i3q8. (l?$j)and (l?~)

tell the pres8ure and density in region IIo Eq. (la) tells the anglo # ,

~. (L@) gives the velocity of the fluid in region IIC To get from

region II to region III the angle of the reflected shook wave must be

adjusted so that:

@Q. a9=p. a (178)

Here ~ and . are already knowi and ~ ~ and a“ are connected by the

relation:

tan ~’ = ))*tan au 079)

.+.

(0
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and

,. —
!

where

(180)

A8 long as the shook is weak so that N is almost unftY

or &6 long as ~ is mnall, it is possible to find a value of ~D which

satisfies the requirement of Eq. (178), In the case of weak shock8, the

reflected wave comes off at the auoue%ical angle, ~Q = Q. However, for

larger angles or stronger shooks there is no solution of this nature and

the problem is much more complicated.

For angles larger than the critical we have the pioture shown

in Figure 16. Next to the surfaoe we have a Woh wave perpendicular to the

surfaoe and extending out a distanoe corresponding to a di8turbano@ traveling
c-

with the Mach angle from the corner of the plate. This distance therefore

increase8 with time a8 the blast passes a&ro8s tb.e surface. Joined to the

Muh wave is the original blast wave and the reflected wave. Behind the re-
.

fleeted shock wave is a small region of GO?WSW%&~.. The fluid whioh passes

through the I&oh wave has a hi@er temperature and a different density from

the material which has passed through the two shock tiaves and therefore there

is a slip stream separating the two

the slipstream).

‘~This is accurately

and is observed to

the &oh angle.

differ fromit

gases (with no pressure gradiant aaross

only in a simple three-shock
considerably.

.

theory,

.
.0
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TW.DIXi!!SIONAL STATIONARY PROBLEW . METHOD OF CEARACTMISTIC$
—.

(This se.tio~h. been mitienby K. Fuchs. Sin.e the

oomplotion of this Ieoturb eeries he hae developed the following extension

of the Riemann Method to twcx.dimonsioml problems. This makes it

possible in principle to solvo

without vortices or shooks.)

For stationary

any problem involving stationary flows

flows, the equati.cm of motion (96) and the

equation of continuity (97)

~“v:+

I.J”vp+

become z

(1/P) vP=o ,

In addition we have an equation of state expressing

(182)

the pressure in termn of

●
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the density and entropy. The entropy remains c&t&+ al&g” a ~t:eaml ine

80 that :

U“va=o (18x)

Let us introduce a parameter Jl,which measures the length along a streaml ino

and similarly a parwnete~ n which measurea tho length along the nor,mals

to the atheamlines, From the definition of .l :

u0i7zu d/’d~m l-l
U=u (1%)

If A is tho angle between the streamline and the x axis, then:

/
tani=u ux (185)

and

We now transform the differential equation6 (381) through (18$ into

differential equations along the streamlines and their normala~ Equation (185)

has already the correot form since

dS/d~ =0

A second equation is obtained from

(
Bernoulli equation similar to Eq.

it is identical with

the equation6 of motion whi~h yield the

(m)) :

= 0

Differentiating Eq. (18fj)along a streamline

d~

‘T =’””~~””~~

we find x

12 ) In everything that follows, -y function of the
just as well as the entropy itseli’. For exampleO h

y laws p@’ = k(s), it would be oonveniont %0 Uf3e k

entropy would
a gafiobeying

(109)

(ly))

work
the

in place of entropy.

.

I
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And xmiking USt3Of Eqs. (181) and (184) :

2 dfi
“~ ..~0t3$~~+.inb~~

Then with Eqs. (186) and (187):

.2P * “~+g=o

● ☛ ● *9 ● *
● *m .eo : ●** b
● 0000-0 ● *
● *9**m0 ● -
● *

The first term in this equation is the centrif~~gal force

which is balanced by the second term corresponding to a pressure gradient

normal to the streamlino~

In order to express the equation of continuity in terms

of~ and no consider a fixed pointP Pd. We cm define a oartesian

co-ordinate system with the migin at the point p. and the x axis

pointing in tho direction of the streamline whioh passes throu;:h Po. Then

d
at Peboth~anddu dxvani~h. Hence:

(at Po)

For a point, P, on a neighboring streamline we have to the first order:

&3xl13o

(at P) b= gdn

,,y=?,d= *dn

a
+

d

Y = ‘-z

● -
● *9

● *** : :0 ::
● ● 9
00 0:0 :00 ●:0 :00 00

●
● *
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09M

(195)

(196)
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Substituting Eqs. (181+),(193), and (196) into the it~a~i~~ O; ‘“ ::

.

continuity Eq. (382) : /

(197)

Since P. was arbitrarily chooen~ Equation (197) holds for any PQintO

Xe can now define two “characteristics” such that if.a silWS~

i8 emitted from any point, the disturbance created cannot reach farther

upstream than the region bounded by the c~racteristi~s (see Figure 1% page 50;

here O OQ is a characteristic). The characteristics make the Mach angle,~ .

with the streamlines Here

silly’= ./. (198)

There are + and - characteristic~ depending on whether t!leangle between

the streamline and the characteristic is plus or minus v.

If we let X2 be the distance along a ~ characteristic,

then:

The equation of continuity (19?) beco:nea (@king use of JJqs. (191) and

(1%0) :

(2CIO)

I/

But the Bernoulli equation (189) can be written:

[201)

4
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And we also have:
● *a9e0m ::

● m. ●9 ● *

(2021

Using these relations to eliminate dp/dl and du/dl from Eq. (200), we find:

Then making use of Eq. (199)3

We may use thi’iequation together with Eqs. (188) and (189) which involve

distanoe along the streamlines but not the distance normal to the streamlines.

Or, alternatively we may also eliminate the streamline from the a~WO

equations by observing that:
.

d
~++ v-z=2008 d

Henoefrom Eq. (188)

dS
m+

And therefore:

(d

-+=o.

(207)

Specicd Case . No Vortices and Entropy Constant Throughout Fluid

Let us assume now that the mction is free of vortices and

that the entropy is aonatant. These two conditions usually go together

since both vorticity snd varying entropy will In general be introduced into

ow problems by means of shocks of varying strength.
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The assum!ltion of no vort.ioity lea~s to the identity~

~Qv~=;vu2 (20s)

The assumption of constant entropy has as a consequence that p and p are

functions of each other so that:

And the Bernoulli equation becomes ( )
the same as Eq. (103) :

Here, in

constant

~2

f

Q
zr+p

= constant ~ TT4Z

(209)

u

con+.rast to the more general case just considcmed, ~iaa

not only along one particular streamline but throughout all spsoao

Thus for a given value of v ~ u is a unique function of

the presmz-e. Sinoe also a is a unique function of the premure~ the

same is true of the Rich angle which iO defined in terms of o and u,

Hence we can define a funotion, F, by the integral:

F= J4
002 — dp
pu

For a given value of ~ a~da given value of the entropy, this function is
.

a uniqye function of the pressure. Xf we wish to consider the denaityo p,

as the

in the

independent variable rather than p~ we may write Eq. (211) alse

form (by use of the relation n2 sin2 ~. c2. d@/d~):

F
JT

Einyc(?s y=
P

dp

The equation (204) maybe written in the form

& ($&F)=----
Home:

is constant along the

e&=f&F

oorresponaing

0’

(211’)

f212)

(219

characteristic80*.
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In generals each oharacteristio will hav~.its own value of a:k.

immediately the direction of the streamlines and tho pressure at

where two characteristics ~+ and ~~ interseot. We need only

(213) in the form:

F
‘v

(215)

Tho material velooity, UO is then givenby Eq.(210) and the Mach angle ~

is givcm by Eq. (198)0

However, in order to find the position ia space of the point of

intersection of two characteriwtios, we have to integrate onoe more to

obtain the equatiortof

●
e~mtion:

the characteristics which satisfies the differential

dy/dx = tan (i ~ ~) (216)

For uniform flow (i.e. $ and F are constant), it follows from

Eqs, (21~) and (215) that ~+ is the same for all + oharacteristios and

a is the same for all - characteristics.

Consider now what happens when a region of uniform flow is

joined by s,region of nonuniform flow. This situation ocours when a fluid

flowing with constant velocity along a plane wall oones to a bend in the

wall 0 Thi~ is shown in Figure 17. ~ the bend starts at a point A@ it

will give rise to a disturbance affecting the region to the right of the

+ charaoteristia ABo The + charaoteristias in this region start from

the wall. The . oharacteristios cross from the region of uniform flow and

thordore a- i8 the same for all . characteri8tios. Consider nowa
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+ ohsraoteristio A~Bt with a characteristic params%z: a“’c“ Sizico”fl“is

constar.t~ it follows from Eiq.(21b) and (~?~~)thtit0’and F have the same

value for all pobltao In other mrds, the direction of the wtreamlineo, the

pressure, and therefore also the material velocity

oonstant along any .+oha~~ctoristic, Furthermore,

A

and the hkch angles are

since the direotion, $ ~ ~,

-
. B $

of tho + characteristics.ia const:mt, .

the + oharaoteristios are all str,~igh%

, ~’-~~ ~~/3~’ lines TheCharacteri~tioa~a

of oourse all the mame direction

AV (~= ~) when they cross a given

at the

wall.

+ characteri.stio~ but they change

direction when crossing from

one + charaoteristio to another,

The quantity a+ Iw.sto be determined fr& the oondition tliat

boundary, the direotion of the ritrea@line is in the direotion of the

If J#mll is the angle of the wall with the x axis at the point

where the char,aoteristio starts, and a= is known from the pro~erties of

the flow in the region of uniform flow, then from Eq. (214)2

= 2 @’wall - R
a+

(217)

and from Eq. (215)t

F=d=ll+ > (218)

12 the wall curves away from the fluid, ~mll decreasee in the

direotion of flow and therefore ~+ and F decrease. From the definition of

FO Eq. (211), it follows that the pressure decreases (as was to “be expected);

..
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hmoe from the Bernoulli equation (210) it foilows that u inoreases o

Slnoe o deoreases with a decrease in pressure, it follow that the Maoh

anglefz alao deoreases and the + characteristics turn olookwieo.

However, if the wall curves in the direotion of the fluid, the

+charaoteristics would turn counterclockwise and

eaoh other~ This gives rise to a shock wxveo If

avoided, the + aharaoteristios can turn c100kvd8e

in both directions suoh that the intersections of

therefore interseot with

8hook waves are to be

Only if the fluid is Iimit@d

the oharaoteristicg ocour

only

mind

come

outside of the fluid. However, in such a ease, it should be borne in

that the solution given above only holds as long as the - characteristics

from the region of uniform flowq The aolutian break&i down (exoept in

speoial oases) when the = oharaoteri6tics chart

in the disturbed region.

The 6olution above ooincidea with the

the wall desoribes”a sharp cornor.

The Function F for a Perfect (?aa

The function F introduced above oan

if we consider a porfqot.gas equation of state.

Jd,/in= .’/(7 - 1)

and BernoulliCs equation (210) becomes:

U2 air= 202/’:y .

Eenoe

1)

coming from the upper”boundary

Prandtl.&?eier expansion if

be evaluated analytically

In tha% case;

(219)

(2.20)

(221)
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Furthermorea

and

Therefor@ from Eq. (211) :

~%?$’“ ~ do

And this can be integrated

,

(222)

(221J

(225)

Xn thi8 f@m the funotion F

constant w and the entropyo

equations of state,

turns out to be independent of both the

However, this i8 not the ease for other

.

●

9*
● 99*9. ●

● **O ● oee
● ** : ● *

● * ● ** ● ** ● e* :00 ● *
●

::0 ● ● 09 ● ‘
● *** : ● **●*m **{m ● **
● 9 ● ** ● ● *

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



-69.

IV. DETONAT IQNS:~AVES . VALIDITY OF CHAPW=JOUGUET CONDITION

(Lecture by Peierle)

.

l~o DERIVATION OF DETONAI’ION EQUAT IONS

A detonation is a shock wave followed by a chemical reaotion

which furnishes sufficient anergy *O nxzintainestationary oondi%iona at the

front. The conservation of mass and the conservation of momentum remain

unchanged but of course the energy equation must be modifiedo

Let + D equal the velocity of the detonation wave. Then, if

the solid explosive in front of the detonation wave is initially at rests ,

Dl=. D. The velocity of the explosive gases behind the detonation front

i$ U2 =- D2 -i-D. Here U2 is positive sinco the

the came direction as the detonation. The mass of

per unit timo per unit oros60s60tional area is M.

explosive gases move in

the explosive detonating

All of the other

quantities retain tho same significance as in the normal shocks. The

equation of conservation of wtter remains:

M=+=&
1 2

● (226)

The combination of conservation of mass and momentum Equation (56) remaina~

IF= p&~p~

v~-v~-

And a combination of conservation of

to Eq. (61) or2

(227)

lWS8~momentum* and energy leads again
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The only difference then between a shock and a detonation comes in the

●

expressions ‘ihich we use for
‘2

o El. In the ease of a detonation,

initially the explosive haa an internal energy mde UP of chemioa~ energy. EoO

and ordinary thermal energy which appears in the equation of state. In

going to the final etate, the explosive releaeee its chemical. energy. The

problem is exceedingly complicated because of the many simultaneous equilibria

between C, COO C02, etc.s which are edablish~d in the explosive gases at

the conditions of extremely high densities and pressures etoa Bright

wilson in the United Stateo and H. Jones in England have made very thorough

studies of the equations of state and thermochemistry of the more usual

explosives 0 In order

equationt3 it ie first

● state~

EWWLE: Perfect-gas

●

accuracy aside.

gas equation of

For a shook. E.

to obtain explioit solution8 to the detonation

neoeeaary to assume a form for the equation of

Equation of State.

For the sake of orisntationO throwing all attempts at

let us assume that the explosive satisfiea the perfeot.

e~ate and E. is the chemical energy released. Then;

-(229)

= 0. Combining Eqs. (228) and (229) and remembering that

the initial pressure (usually one atmosphere) is negligible with respect

ta the detonation pressure, p2,’ (usually of the order of 200,000 atmospheres) :

(230)
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Or if y is set equal to ~ as is customary under these conditions:

v
*

1 %+ ;
‘~ VI

(231)
1

Eq. (231) ie an example of the Hugoniot pressure-volume relationship It

expres$es V2 in terms of p2 for

hyperbola of Fig. 18 shows this

It icithqreforo

Si’mass, momentum and energy do

a given initial condition, (pi, ‘1)0 The

relationship.

apparent that the equations of conservation

not uniquely define the detonation pressure

and speoificsvolumeO The valueE of p2 and V2 must lie somewhere along the

Hugoniot curve. Chapman

if one draws the tangent

the point of tangenoy on

point is labeled C.*~. in

and Jouguet independently nwde the hypothegfs that

frorntho Hugoniot ourve through the point (pl, Vl)

the Hugoniot curve is the point (p2, V2)0 This

Fig. 1.80 iqeoan show that for this find state.

the detonation velocity ia just equal to the velocity of sound in the

explosivo gases relative to the motion of the gases, ioe., D2 = C20

Von Neumann has shown under what conditions the ChapmabJouguet hypothesis

is valid.and under what conditions it fails.

On the Eugoniot diagrams the slope tan $of a line from

PIO VI to ~Y point P2S V2 is proportional to the square of the detonation

velocity. This canbe seen from Eqe. (226) and (22’7) since @ =tan~.

Thus :

(232)

The Chapmn-Jouguet hypothesis, therefore leads to the lowest possible

detonation veloaity~ For a smaller angle fQOthe line from pl,V1 never
4.

; ‘):. ‘ii
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d
reachea the Hugoniot curve and this wou3d correspond to the explosion re-

leasing an energy less than Eo.

For the ease of the ideal gas withy =~$ at the Chapman

1/2
JOuguot point, p2 = h(Eo/~l) and V2 = (#~)Vl m that D = 4 (Eo) , als@

= {v/vl)D = (3/h)D = 3(EO)1/20
C2 = ‘2

For T~TO Jj’o s 1000 cal/gm

= @,~O @s.atm/gm = 10&300000 f%.lb/D = 45 x U?6/g (ft/seo)2 (the factor

g gets absorbed when we use Blug.sfor our mm~ unit as implied in the above

equations),> The original density of TNT is 1.70 gin/coso that

VI = .fjpCc$lgm. Thus the detonation pressure for TNT should be

p2 =4x ~,290/.~ =280,000 atmospheres and the detonation velmity

should be D
61f2==4 X(45 X1Q) qoooo ft/m343.Y Both of these values

are muoh too large. Bettor values oould be obtained by taking a smaller

value of Ea, but the reason for the discrepancy is thzt the Ideal.gaa

equation with y =5 is not applicable in the low-pressure region and only

approximately true for the very.high.pressura regiono

Another property of the Chapman=Jouguet

has the maximum entropy of any point along the Hugoniot

~@20S) and remember from Eqs. (12) and (1~) and

(b l@W2) S = o p2 and (~E#S)V2 = T, ao that:

~ =(%$.+(!&j%2=a%! ‘T
● 2

Therefore ifwe take.the deriw.tivo of both sides

to V2 keeping PI, VI, and ~ oonstanta we get:

point i8 that it

ourveo Consider

thermodynamic a

iig

of Eq. (228) with respect

dS
%&” p2+T~ =. _ + ; (VI- v2)~-

● ’
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Therefore, dS/dV2 1s zero and

the Hugoniot curve) if either

point where the slopo of the Hugoniot is

the entropy has a stationary value (along

‘1 = V2 or elso wo are at the Chapma-Jouguet

(276)

The condition that VI =V2 corresponds to a minimum entropy and the

CAapman-Jouguet condition corresponds b a-maximum entropy. Until quite
,

recently the anly arguments advanced for the impossibility of V2 being

greater than the Chapman-Jouguet specific volume was based on the smaller

entropy of such points leading to instability. HoweverO suoh arguments

were not convincing and it remained for Ton Neumann to prove the imposei.

bility of such points on the basis of kinematical arguments.

Since dS/dV2 is zero in the viainity of the Chapman.

Jouguet point, it follows that ~?orthis final state the velocity of sound

is given by the relation:

.

and by virtue”of @s. (232) sad (226) :

. . ●

(238)
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Thus. if the final state corresponds to the

volooity of the explosivo gases relative to

equal to the velmity of soundo

[39)

Chapman-Jouguet condition the

the detonation wave is just

The arguments of von Neumann depend on

have an equation of state for which the Hugoniot8 look

the fad that if we

like Figure19 (a)

only compressiona~ 8hook8 aro atable~ Whqreas if we have a pathological

Hugoniot such as 8hem in Figure 19(b) only rarefaction shooks are%table.

Thi8 may be seenby dividing the supposed shock

.
first part travels faster than the 8eoond partO

● will divide itself up into many 8ma13 Changeso

part of the shook travels faster than the first

introtwo ptwt8. If the

the sh~,k is unstable and

However, if the seoond

part, the shock will main.

tain itself and show no tendency to split up into smaller shocks.

Tho velocity~ Us of a shook wave which goes between any

point pl, VI te a petit P2,V2 on the same Hugoniot curve io given bya

relation similar to that of Eqo(2~2),. If the medium in front of the

shock is at rest~ then the same arguments whioh led to Eqo (232) apply

(with E. = 0) and

$. h2 {$: =vftaq (21@)

.

Therefore the greater the slope “~the greater the shock.wavo velocity.

‘~
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Figure 19

S) Compresaional shock in Figure 19(a) . Consider a aompressional shook

going fron point 1 %0 point 20 If -m tried to break this up into tm

smaller shocks one going from 1 to y followed by one going

would notice that ~ is less for the shock from 1 to ~ than

from ~ to 20 This means that the ~to.2 shook will travel

overtdco the l-to=~ shookO So this oompressional shock is

from ~ to 2, we

for the shook

faster and

atablec .

2) Rarefaction shock in Figure 19(a). The argwment fpr the instability of

the rarefaction shopk for a Hugoniot suoh as shown in Figure 19(a) proceed8

as before. However, aowthe 2-to-3 shock is spatially- in front of thej

~-to=l shock and therefore the faster velooity of the 2-to=~ tends to

separate the two shockpe Thus a rarefaction shook will tend to decompose.

~) Compressional shock in Figure 19(b) o m WO divide the compressional

shock &to.5 up into’two smaller shocks ~to-6 followed by 6-to-~p we notioe

that the slope ~ is larger for the &te.$ \ha? fo; the &to-~0 Thus tho
● . ..b
so

::0● ,..: ● e* .
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&+o.6 will travel fa8ter and run away from the 6=%o-~ shock. This means

that for this pathological Ilugoniot,the compressional shock vmuld be

un8table~

@ Rarefaotion shock in Figure 19(b). Sinoe a shock from >to.-6 would

travel~l~wer than a shock from &to=& it follows that small rarefaotion

shooks will tend to oombine te produce larger disqontinuitieso Thus

●

rarefaction shocks are stable for the pathological Hugoniot shown in

Figure Rg(b).

Von Neumann postulates that a detonation is made up of two

lx)
separato step6. In the very front of the detonation waveD the material

is highly compressed by a shock but no chemisal reaction has taken place.

Directly behind the detonation front oomea the reaction zone in which the

ohemical reactions take placeo Experimentally it is known that the

reaotion zone extends over a distanoe of between a fraotion and a few

centimeters depending on the explosive In order for the shape of the

detonation mve to be independent of time. it is necessary that the

initial compression shook and the subsequent rarefactions (during ~ich

the chemioal reactione proceed) must both be stable and travel at the

same velocity. This is a stringent oondition and 8erve8 to iimit the

possible final states of the explosive gases;

If E. is the final amount of chemical energy liberated in

the exp30~ion and n E. is the amount of energy already

timeO thenwe can follow the courso of the detonation by

of Hugoniote for different values of n varying from n

reaotions have started,t~ n = 1 where t~e.reactions ~ve
● 9... *

liberated at any

drawing a sequenc?e

= O before the

been oompletedo

,
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The ~ormal shape of these curves is Bhown in Figure ‘20L?

which takes the

n = O Hugonioto

The first step in the detonation is the compression shoak

~P10siv9 from plnvl ta 8ome point A, AQO or Afton the

The slope, tan~= (P2 = I@@ “ VI), where 2 may represent

A, AQ, or Ae determines the shock velooity. By the conservation of mas89

momentums and energy it follows that any ohan~es of pressuro and volume

which take place at thi8 velocity muet have thi8 same 810po0 Thus, for a

stationary detonation Wave. it fo~lows that if the initial compression

shock hus taken the explosive to some

O /r
P \NB

\

An

A

A

v —+ ‘1
Figwro 20

pointA~ AQ, or Am

the states reauhod

ohemical reaotions

lie along the line

on the n = O Hugoniot=

during the subsequent ‘

and rarefactions must

joining p,,V1 with

thie point.

Thus it.is

initial compression

apparent that the

could not carry us

to the point A* because in that sase~

the line p19V1 to A“ does not interseot

the n = 3 Hugoniot and therefore the

uhemioal reautions could not go to tom=

pletion without forcing the detonation welooity to bo larger.

The line pl~V1 to A which passes through the Chapman.Jouguet

point ha8 the smallest slope whioh is possible from this standpoi.nt~

Suppose that the initial compression shock leads to the

point An. Then as the chemioal reactian~ prooeed, we can make gradual
●
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rarcifactions until we reach the point B o To reach the point B @ from B

would involve an unstable rarefaotion shook which vmuld coon break up into

gradual rarefaotiona along the Hugoniot from B to tha Chapnm~JGUgU~

point. Sinco the entropy at the Ch&prrmn.Jouguetpoint is a mximum along

the HugoniotO it would be impossible for the rarefaotion to proceed further.

Thus it is possible cinematically to reach any point at or above the

Chapman.Jouguet point, And it is impossible to reach any point below the

Chapman=Jouguet point~ Whether the rarefactions will prooeed froma point B

to the ChaprmbJouguet point depends on the condition behind the detonation

front. The velocity with respect to the detonation front of the explosive

gases at the Chapmn.Jouguet point is just equal to the velocity of sound.

EJutfor pointsb 130above the Chapman=Jouguet point it may be shown that

the velooity of the explo8ive gaaes is slj.beonie.If

ta deorease behind the detonation wave, the velocity

gases right behind the detonation wavo is aupersonio

gases further back. In this cas~ the gases further

the pressure oontinues
,

of the explosive

with reapeot to the

back cannot send

disturbances up to the detonation front to oppose the rarefaotion from

B to the Chapman-Jouguet point. That this change will ooour spontaneously

if not opposed is guaranteed by the inorease in entropy. HoweverO if the

pressure should rise behind the detonation front9 the velocity of the

explosive gases right behind the detonation wave remains subsonic with

respeot t~ the gases farther behind and disturbances can travel up to the

detonation front and maintain a point above the Chapman=Jouguet point.

ThusO in the normal case. we expeot the Chapman-Jougu& point~ But we can
,

set up special exampYes suoh as a deto=”.~ionfrom a hi~izexplosive setting
●
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off a detonation in a weak explosive whore the Chapman-Jouguet condition

would not apply,, Another example

wave (see J. M. Keller9 ~=~b~)o

‘1’
P

P{

n

II

v-?

is a aph.ericallyconverging detonation

We can imagine another

situation

condition

Figure 20

where the Chapman.Jouguet

would nOt app~yo ?kL

we have supposed that the

Hugoniot curves for constant n do

no% orosao If they should oross it

would be impossible to proceed

gradually from a point An to a

noint B. Since the oourse of the

ohemiual reactions must prooeed
l?igure21

along an orderly path from n = O

ten= 10 It would be neoe88ary to pas8 through un8table raref’action

shookso The only possible final 8tates that may be reached under

those condition correspond to no crossings of the various Hugoniots

between A“ and B. Unless this is possible, no stationary detonation

wave is possible for the $y8%~0 ~ (~p2/MV2 is greater

than zero for all values of n and V, this difficulty cannot

ariaeo This implies that (bE#&) is positive or that each
P2$V2 .

sta!;eof

.
● ✎

●

9*..*
● . . .

● m.
● 0 ::

:
co ● 00 ● 00 ● .C :., :*$!

●

::0● ...:
9 ● 9* ●

9** ●0: ●

● m
::0

● ** ● . . ● *

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



9*O ● .

:*. b ● 9

●0.. :0: ●*e .
** ..* ●:0: .

onoits is mown. iiere the

Feint i~ rmt possible, hut

iiebxlatioflwaveo

prev.iou6 ar.uents indicate-that the

crossing l-lug--

any point at B or above might represent a stable ,

Consider a detonation umve proceeding in the ~ direction

from a fixed wall at x = O. We shall assume that the Chapman.Jouguet

condition holds and the explosive satisfies the perfeot gas equation “

withy =30 Under these conditions, at the detonation front:

C2=D2=~D

‘2=D-D2= iD

{m)

(242)

The velocity of the explosive gases relative to the wall varies between..

zero at the wall and C /~ at the detonation front~2
Ther@fore wo oan

—

4) Consider 112as a function

8ides of Eq. (228) with respect

of n? P2$ ad V2. Then differentiate

to n keeping P2, PI, and Vl constant

tap,g., + @%LP2 (9,2 ‘= i (,1 + P2($?=)P2

But @E2)/(W&p2 =-Pa so th}atrearranging the above equation:

Since p2 . pl is always positive@ (~V2)/(~n)P2 and (bE)/(?@w,v2
.

must have the same sign. ,
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-Detonation
dx = Ddt

/ /11

wt?”ll~ t->

Figure 22 .

lines of 610pe u - a.proceeding from the wall

apply the Riemann method

Front to thie problem. Sinoe

‘Y= ~,a=ou The 1inea

●

of slope u - c conserve

: Ddt the property u - 0 and
2

the line$ of slope u + c

conserve the property

U + o. Along the wall,

t;erequire that u = 00

Therefore, all of the

have tho charaoteristio value

. 0. But along the detcuation front, u - 0 =-D\’2.

However, the lines of constant u i-o originating on

all of the way to the detonation wave sinoe these u

Thus in region I, ‘lyingbetween the wall and dx = ~

is zero and the velooity of sound is ~ D.

tho wall do not extend

-i-c have tho alopo G/2.

D dt the volooity, U9 .

The other lines of oonstant u 1-c cannot originate on the

detonation f’ron%,sinoe it itself i8 a line of constant u + co ‘thusthe

remaining lines of constant u + c must originate at the origim They

mu8t be 8traight lines sinoe the Iineo of constant u . 0 whioh they oross all have

have tho same velue. The slope, &dt, of these lines of oonstan% u +CI

is alse u + So Therefore in region 11;

%’=$ =U+o (243)

But ● e
● m

D c“” : :“ ;+~~
u- o =- - ●0 ●9* ●- .aO*● *O ●*

2 (24+)
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Therefore:

Regio~ I

0<:<; Ju = o

.

L
D

o =-
2

ThifJforms a oomplete solution to the problem,

If the Ghapmn-Jouguet condition were not satisfied smd the

final state corresponded

than the Chapman=Jouguet

oonstant u + c cross the

to a higher pressure and a lower specifia volume “

point, then u +0 is less than D and lines of

detonation front. @der such conditions, the

conditions at the front are aff’ooimdby the conditions in the rear and

the deton~tion velooity must be adju6ked to fit these conditions.

lb)
17. WANE DETONATION INITIATED WITH FREE SILRFACE

Consider a detonation mve proceeding from a free surface

at x = 0. We dxdl a88ume aga”m that the Chapman.Jouguet oondition is ..

L$ati6fiedand the explosive satisfies the perfeot-gas equation withy = ~.

This problem is very similar to the case with the fixed wall. Againe the

lines Of constant u . 0 cut across the detonatim front. Since u = D/4

and o = 914 right behind the detonation front, it follows t&t all of the

lines of constant u .=o have the characteri6tio value - D\2.: All of the

● . ●0
w :

●
● ::0

●
●9: ::: ● m

●c too:*O ●OC :.0 ●.
1$ G. I. Taylor, BM-@ AC-659 .
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● **be.. 9
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lines of confhuxb u + o originate at the origin.and are straight lines

with the 6~Op0

x/%=u+G (249)

Therefore just as in region 11 of the previous problem:

(250)

The fr”eesurface has a pressure and hence density and velooiliyof sound

equal to zero. It would therefore have the equation:

[free surface) x/t =. D/2

Along the freo surfaces u + u ~ D/2 so that the free surface is

● a line of oonatant u + 0. Figure 2’~illustrates the problem.

,<~Detonation Wave

T
x

I

.k

[252)

itself
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38. SPHERZCA&Y DIV13WfNG DEYXM?ATIONWVES
19

——-———

Spherically diverging detonation waves are oxamplea where

the Chapma~Jouguet condition applies. The following treatment is due to

G. I. Taylor.

If we suppose that the velocity of the expanding detonation

wave is radial and haa the magnitude UO then the equation of motion (96)

beoome8 in sphesical ooordinate8:
‘,

17):And the equation of continuity (9’7) becomes

16) G. 1. Taylor, BM-&3, Ac-.639

17) If X& is the unit motor in the radial direction~ it may be gxpress~

in rectangular coordinates:

i (x/r) +~ (y/r) + & (z/’r)~1=-

‘1’husthe equation of continuity is

;: i :Miiiiik
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The equation of motion is then the same as for the one.dimensional plane

caseO but the equatio~ of continuity he.sthe additional term =.2pu/r. We

seek solutions of the equations such that U, PO PS and o are all functions

only of a = r/t. “’This would mean that!q

bu+ah
Ot F “0

So that the equation of motion

(u - a) du/da

bd the equation of continuity

.

(25Ij)

(256)

(ZY@ becomoa

= - (l/p) alp/da

becomes:

2U
+~ =0 (257)(u - a)dp du

—z+=P

But sinoo 02 = dp/dp, alp/da= C2 alp/da so that Eqs~ (256) and (257) SWAY

be combined to give:

Or eliminating alp/da:

p - {u - .)%5

.—

du/da =. 2u/a

18) This follows sinoe:

(293)

+. :90 :**
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In Eq. (258) i$ is convenient to represent (3/p)alp/da as

(I/p)[dp/dc2)dc2/da since o is a function only

density may be regarded as a funotion only of o.

f=%$$

it follows that:

of the density

Thus letting

and the

(261) “

For a perfect ga8, f =y - 1 (2&9

These equations may be set in dimensionless formby

replacing the variab3ea u and c by the dimensionless quantities:

a = da (263)

.B = W/c (24)
I

z = ha/a. (265)
.

Hero a. is the value of a for the radius of detonation.

Combining Eqs. (2’55),(259)0 and (260) we get:

dz 1
az=z’

Combining Eqs. (266) and (268), it follows that:

[266)

(267)

(263)
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And oombining Eqs. (267) and (268):

(270)

To eolve these equations for any particular ease it ia

first neces6ary to know the equation of state. We then prooeed as follows:
.

1)e First calculate 02 and do2/dp as functions of p. Next tabulate

f as a function of @c

2). The Chapman-Jouguet condition and the Hugoniet relationo are the

same as for the case of the plane detotitiono They determine the

detonation velocity, De and the value of u =D - D2 =D(l -=1~.~)at the

8hook wave fronto @otioe that u corresponds to the u
2
of the plane

detonation case.) If R is the radius of the detonation wave at any

time~ then from the form of the solution which we require:

R=Dt (271)

and at any other point at this timoa r = a t. Therefore we have the

similarity aondition:

Therefore it follows

But right behind the

a/D = r/R (272)

that :

u/D = = r\R [273) ~

c/D = @/@R (274)

Z= .@(r/R) (275)

detonation frcntO where r =R, according to the

Eq. (273) and the conservation of matter [226) :
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And the Chapman-Jouguet condition gives;u + o = D so tht from Eq80 (279)

and (274) for r = R:

(277)

(270)

The relationo (275), {279)2 and (278) give the vs.luesof the

variable@ e,~, ~nd Z at the detonation waveo Then Eqs.(2@) and (270)

can be integrated numerically to give the conditio~s at any other point
●

behind the

at a fixed

detonation wave.

Just as in the case of the plane detonation wave initiated

wal10 the velocity goes to zero at a point between tho detonation

front and the center (M the case of TN? with initial deneity of l.s10

& Jones has computed that this point occurs at r = 4L8 R. This is to be

compared with the value x = 0577 ~~e~ whioh he calculated for the plane wave

problem.). The

detonation wave

wave~o Figures

pressure and velocity behind the spherically diverging

decr6ase much more rapidly than for the case of the plane

~and 25 show% Jones’ results for the Tl$T.

19 SPHERICALLY CONVINCING DETONATION WAVES

Keller (1.A-l@) hae considered the case of spherically

converging detonation wave”s~ This problem is much nore difficult than the

case of the spherically.diverging detonation waveso No stationary solution

ia postiible. At firste the Chapman.Jouguet conditicn gives the detonation

-relocttyand the pressure and velocity ;
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Gradually at first, rapidly later, the pressuro and velocity at the detonation

front rises and the detonation velocity inoroases. By the time the detonation

waves have travelled half way to the center, these effeota beoome very important.

No analytical solution has been obtained and i% was neoessary (even in the

case of a perfeot gas with y = ~) to make the calculations withthu help

of the I.B.M. machinen.
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V. SHOCK ‘;JAVES

(Applications to Spherical

Lectures by Penney

(20)0 GENERAL EQUATIONS AND VIJ3KPOINT~

● 99:00 ● ●°0 : ●a. .● O
● ● ● * # ●

● * ●:9 ● O* ● ** ● ** . .
●
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9: : :::6 6, .*

Blast Waves, etc.\

.

Blast waves are good examples of the shock waves which we studied in

a previous eectiono Xe are usually interested in blast waves in either air or

water. In either case, the perfect-gas equations suffice. For airp Y = 1:.4and

for water, y= 30 Usually the matter in front of the shock wave is at rest so

that U1 = 0.

Let us summarize the shock-wave

the blast waves:

U1 = l)~+u=o
I

u~ =D2+U

From llqs.(56) and (52)

aquationswhioh are applicable for

(281)

Heres of courses q= PJP1

From Eq. (130}:

c2=yp/p

and from Eq. (67)

(282)

(y-l) + (y+l)g
‘i=

(y+l) + (y.l)j

Combining 13qs. (279), (281), (282), and (283)

‘U2 /pl
—=

()

PI “f=) ~ 1—. —.
[
(y-l) + (Y@

c: YPl pl (p) 2y
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From Eqs. (280), (281), and (283):
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U2 D2+U D2 P1 1 2(f.1)
—= —= 1.— = 1- 1—=. - a —.— (285)
u u D1 P2 7 (y-l) +(@l)&

Furthermore, it is convenient to discuss the temperature, !I!;~ to which the gas

returns after the wave has passed and the pressure returns to its initial

value, pl . Rom the perfect-ges law, p\~= IiT ~ and the perfeot-gas adiabat~,

pvy = k(S), it follows that:

(286)

From Eq. (72)

the change in

.

6s

it follows that the ratio

entropy by the relqtion:

‘Cph T;/Tl

of T? tO T1 i8 connected with

(287)

Instead

0, such

of considering T; itself, we can consider the increase of temporatureO

For weak shocks. it follows from Eq. (73) that:

~/Tl = (1/2y) (@y2) (&l)3 + 0~* . (289)

divided by

Since the change in entropy is equal to the heat dissipated

the temperature, it follows that for weak shocks where

AS s Cp & ~ + Q/Tll =Cp e/T1 +

the heat dissipated in the specifio volume, VI

0a (290)

= l/pi , is TlA&3=Cp0 .

Therefore the heat, H, dissipated by the blast

volume of matter is

● ✎
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For air with y = 1.4 and T1 = 273°Ks We ~etg

#——.—
& 2 3 100

Q(OK) 2.5 10”3 31

The energy dissipated per unit volume of air is therefore small ifs is less

than 10, but very large for higher compressions.

For water at 273°K, if we &xpress

1000 atmospheres) it has been found that:

pz in kilotars (approximteYj’

G = 00335 p23 - .0118 p24 + .0035 P25 o 001 ~ P26 (292)

so that even at a distanoe of 2 charge radii where p2 = 20 kilobar$ 0 = 20QE~.

Or at a distanoe of 8 charge radii where p2 = 1 kilobar, $= ,02520K.

Thus we oan neglect the chmge of the resultant temperature in all unaerwate~-

blast problems.

For very strongblast waves, the hydrodynanio equations becoma very

For weak shock waves with.$ less than 20 the shook equations can be

expanded in powers of (f-l). Aeocrding to Eq. (G8)\

Then (from Eq..282),
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from Eq. (284) ,
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:0 ● .* . . ,

U2
—=1+

*1
~ (4=1) (296)

Cf

/’

and from Eq. (285)9
I

~=~
(J-l) - &(j.l)Z+oo (297)

Uy

(21 ), DWL4DATIONOF STRONGBLASTWAVES(NOTNEGLECTINGENERGYDISSIPATION~,

For strong blast waves in air, it is not possible to neglect the

dissipation of energy and the resulting entropy gradient in the air behind tho

blast wave. The hydrodynamical equations in spherical coordinates then become

19) has developed ansomewhat too complicated to solve analytically.Penney

extension of the Riemann method whioh is applicable to this case,. He introduces

two funotions P and Q defined by the relations; ,

P =a+u (298)

Q=CJ-=U (299)

Here u is the radial velocity of the gas (assuming that its motion is strictly

radial) and u is the usual Memannian variable:

(300)

(301)

since a constanc~,of Q implies the constancy of entropy.

Making use of Eqs. (253) and (254) for the equation of motion and equation of

continuity in spherioal coordinates and m~king use of the fact that 0 remins

,oonstant for a given gas particles, ioeog d3/dt +U dO/dr = O , it follows

after a considerable job of algebraic manipulations that:
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(302)

2) For a point moving with the speed dr/dt = u - c ,

Thus P and Q serve the same purpose in the blast wave calculations as the

linas of aonstant u + u am cons~nt a . u in the one-dimensional Riemann

methodO The only difference is that now the line with a slope of u + c wi23

have a value of P whioh varies slowly with time, These quantities lend them=

selves to a point-by-point numerical integration suoh as indicated in Lecture 10

Section ZO For a perfeot gas. a = 2c/(y - 1), and the expressions for dP and

dQ, Eqs. (302) and (305)s becomes

● ✼ 1) For a point moving with the speed dr/dt ~ u + c

[

Zuc
dP=dt .— ~~ -&- ~. <~]jl+— (302”)

r

2) For a point moving with the speed dr/dt = u =.c,

(303’)

The boundary conditions are those for shock waves summarized in Eqs. (279)

through (285) or !Iq~(293).

The only trichy feature of}he calculations is that the lines with

the oharactaristia, P, aro generated with the speed dr/dt = u + c whioh usually

is faster than the velooity of the blast wave. The characteristics in front of

the

● the

shock wave must be disregarded.

In this way, Penney has found (in agreement with experiment) that

peak overpressure, p2 - PI = Pmx . in l@/in2.00~~~de~oedby the explosion

::i.i:~
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of W lbs of high

the relation:

● 0 ● *8 98* ● 00 ● ** .*
● .

explosive at a distance R .“fie~,~by &;fs&~sented by
● be90 :00 . .

R

Experimental

plosive8 are:

Explosive

TNT toast)

Torpex

Dithekite

(304)

values of the constants A and B for various e%=.

A B

10.7 701

12.3 6.3

12.0 5,,6

This peak pressure deoreases muoh more rapidly than would be expeoted from

acoustical kheory. In a distanco of between 8 and 20 oharge radii the

peak pressure

● of the theory

atmospheres.

falls a faotor of 9 as oompared to a faotor of 2 on the basis

of sound. The peak pressure at 20 oharge radii is around 4

(22)0 SHAPE O&’BLAST NAVE AT MilGE DISTANCES.

At large distances where the peak pressure i~ less than twioe the

7init 1 pre8sure (4 less than 2),

In that ease it is easy to show in

pressure should decreaso inversely

tho method of the last sect5-on*we

we oan neglect the energy degradation and 9.

a rough qualitative fashion that the peak

proportionally to the distance* R. Usiw

havex

(305)

The additive oonstant, 2cl/(Y - 1), is added for oonvenienoe. It is easy to

show that any oonstant number added to a oannot

fluid. (Then right behind the blast wave using
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c1

= O through terms of the order of (~ .1)2

Also it may be shown that at points behind the blast frontp Q re=ins

practically zero. This fOllOWS

. dQ/dt = - 2uc/r

The value oft is smaller than

frGm the faot that

Where dr~dt = u-o (307)

its maximum value, u2 ~ (o~Y)(~Ml), and

dr/dt is very nearly equal to -ol . therefore

or

and the value of Q is negligible with r@sPect to cc Therefore taki~

But
@/dt = .2uc/r = o 4c(o-ol)/(y-l)r (311)

when:

dr~dt =U+c =[2~y01j (..0,) + o (312)

Diffe~ntiating P fYom Eqs. (%~) and substituting into (332)s
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dc/dt = - o(o-ol)/r

Combining Eqs. (312) aa~ (313)0

or

and integrating Eq. (315),

2/(y-1) (C.ol) = Grc

90 ●:0 ● O9 ● eo ● ** ● 9
● ● . .

● b* ● . .
:: (313)

:●:.:::
● ::

● * ● 9* .*

(314)

(315)

(316)

Here G is a constant along the oharaoteristic.

If we

velooity of sound

know that at the point r = r. at the time t = to the

has the value c = co and from Eq. (316) the corresponding

value of the oonslxmt is ~ = Go s thenwe oan use Eqs. (313) and (316) to tell

US the corresponding values of r and c at a subsequent time} t. Using

Eq. (316) to eliminate” r in Eq. (313)3

“da 1—==—
dt Go

~(y+l)/(r-1) (C0C1)2

or integrating

J

o da

t-to=-Go ‘—— r
co

&w/Y-U (c-cl)

1) is an inte~er, the integration mayu (Y+ I)/(Y- .

(3S8)

be carried out explicitly,

Thus (using Dwight’s Tables of Integrals 161.2)2
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and for other ValUOS Of y suoh that (y + I)/(y - 1) Is an integer,“the explicit

integration.is oarried out by means of a simple reoursion relation (Dwightas

Tables of Integrals 161.29)., From Eq. (318) or (319) we can tell the value of

c for any time and then from Eq. (316) we kow the corresponding radius.

There is only one objection to the above prooedure. The front of

the blast waves does not travel as fhst as the propagation of the charaoteristios.

Therefore the position”of the shook front must be calculated $~s~aratelyand any

values of the radius obtained by the above prooedure which Me in front of the

shock front must be discarded. At tinytime, the position of the shock wave~

●
RD may be determined from the integral:

R =
s

U dt + aonstant (320)

Here the integration must be oarried out numerically with the help of Eq. (296):

()
...

U=cl+ * o~ ($.1) + .00
.“

The value of~ to use in (296*) oan be oomputed

from the characteristics.

The above treatment is particularly

(296°) “

from the values of o obtaind

useful in analyzing the re-

sults of a blast meter whioh measures the pressure at a given point as a
●

function of time. Knowing the pressure for all times at this one points we
.

oan then oalculate the values of G and obtain the shape of the blast wave and

the pressure at any other position.
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●
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Taylor developed a similarity solution for the conditions within

and behind strong blast waves. He treats the radius of the blast wave, R, as

an independent variable,, All of the properties of the gas behind the blast

20) of Ra~ y= r/R,wave are then expressed in terms. Assuming that the blast

wave starts expanding from a point source, Taylor seeks solutions to the

equation of motion, equation of continuity, and the equation for the conservation

of entropy (behind the blast) suoh that:

P/Pi =A2 R“3 f(Y)/c:

P/Pl = g(y)

(321)

(322)

u =AR ‘3/2 h(y) (323)

dR/dt = A R“3/2 (324)

Here the oonstant~ A, is related to the energy of’the system. In replacing

the variables r and t in the hydrodynamical equations by R and y it is

convenient to sett

(325)

()d =10

% ~ z%

The equation of motion (253)

(3/2) h - y h’ +

(326) .

then becomes:

Ml’ .}f’/(yg) = o (327)

and the equation of continuity (254) beoomes:

20) We have changed Taylor’s notation in the following way$
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(h-y) g’+2g

Sinoe the equation for the

(after passi~ through the

moitionis

.:191:
●* ● ma
.8*” ●°0 :
● *e*e*
● 9**.
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● .
, *
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h/y+hqg=Cl ● ● :- :*:: (328)
9* 9* :0 ● *

● :eO ● ●

● 0 ● *

conservatio~ of entropy for an element of fluid .

blast wave) following this element of fluid in itG

[%++)(w-y) = c) .

it follows that:

f [-=3y+ (3?- &)h - 2yh2/~
f’ =

[( )y-h 2 - f/g]

.

ho= [(l/y) (fe/G) - 3h/2]

g
[ 1w=~h’ +2h/y /(y=h)

These equations can be solved for fsg

(329)

Knowing the values of theffmc%:ons f~

we can integrate these equations numerically to determine their values at any

other value of y. At the shock front:

u = dr/dt =A R.3/2 (331)

g(l) = P2/Pl = (y+l)/(y.1) (332)

h(1) = uJu = 2/(y+l) (333)

f~l) = (c;/U2; (p2/’pJ = 2y/(y+l) (334)

Solving these equations numerically for air with y = 1,4 and for a substince

21) obt~ined the following results shown in Table I ard Fig46.with y = 5/3 Taylor

. .

21) G. I. Taylor (BM-35; RC-21O) p,,12

.
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102.
●m ●*9●m*e’a: ;’: ●
● ***9*
● boem ●99 :: ~
● 00 ● ● *

● -
w

TABLEI . :. . .●* 9**● **gee ● *9.0
● ●* ●0 ::9* :0 ● :

Air’with y = 1.4 ● : “
●

● ●*

l—-——”—— — .— —..
}y f h $

i%
— —..- —

1.00 1.167 0.833 6.000
0.98 0.949 0.798 4.000
0.96 0.808 0.767 2.808
0.94 0.711 0.737 2.052
0.92 0.643 0.711 1,.534
0.90 00593 0,687 1.177
0.68 0’.556 0.665 0.919
0086 0.528 0.644 0.7Z7

, 0.84 00Wn 0=625 0.578
0.82 0’.4!31 0.607 0.462
0.80 0.478 0.590 0.370
0.78 0.468 0’.573 00Z97
0’.76 0.461 0.557 0QZ39
0.74 0.>455 0,542 (3.191
0’.72 0,450 0.,5Z7 ().152
0.70 00447 0.513 0.120
0.68 0.444 0.498 0.095
0,66 0.442 ‘0.484 0.074
0.64 0.440 0.470 0?,058
0.62 0.439 00456 0.044
0’.60 0.438 0.443 0.034
0.,58 0.438 0.428 0.0Z6
0.56 0.437 (3,,415 0.019
0054 0.43? 0.402 0.034
0.52 0.437 0.389 0.O1O
0.50 0.436 0.375 O.ou?

Approximate Calculation for y = 5/3

Y f h g
.—-——..— .

1000 1.250 0.750 4,00
0.95 0.892 0.680 2.30
0“90 0.694 0.620 1.14
0.,80 0.519 0.519 t;,53
0.70 0.425 0.445 0.29
0050 G.379 0.300 0.05
0.00 0.344 0.000 0000

.
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Figure 26, Air, with y= 1.4,

Unfortunately,we oannot satisfy the shook-wave boundary conditions for weak

shock waves. Therefore this solution is only satisfactory for strong blasts

and beoomes progressively less satisfactory aso%h~.bl.astbecomes weak,
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of f, g, and h. Let this energy be Etot , then: \

R

%ot ‘hn
j( ~ Pu2 + p~y-1~ r2dr
o
.1

= 4n

~[

i plgA2R”3h2 + ( ~
1

~2R-3f

)Pl~ R3y2dy

o

1
= 4np1A2

1[

2+ f’~gh —
Y(Y-1)1yzdy

0

(335)

The totel energy is therefore

is only a function of gamma.

%ot = 5.36 p~A2

expressed in terms of a definite integral ‘which

‘1’husfor air with y = 1.4, we get$

(336)

and using this expression to eliminate AK:

●
P = o133

u = .442

u “ l/2R-3/2= .442 (EtotiPl~ (3?s)

hot f/R3 (337)

(~tot/Pl)
l/2R-~/2h (338)

P = Pl~ (340)

a complete solution to the strong-blast-wave problem.These equations form

Notioe that from these equations it is clear that}for a given total energy, p

~s independent of the atmospheric pressure or density, u and U are inversely

proportional to the square root of the atmospheric pressure or density, and the

time soale is

density.

The

can be expressed in terms of the Taylor,funotions since (using Eq~ 72);

proportional to the square root of the atmospheric pressure OI?

energy W dissipated (in heating the air behind the shook wave)

● ●
●

● ✚
✚

● m● .:* :0
::● O ● 9* ● ** ●:0 :.0 . .

9.
::0.
● O*. ● 00 :
● 0. :

.*. : ● . ::.
●

● . ● .**e

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



To get a lower limit to the dissipation, this inteGral can be carried out to a
.

distanoe, Ro, where recording to the Taylor equations the pressure in the shock

front is roduoed to the initial pressure., Beoause of the poorness of the

approximations invQlved when the shock wave goes from strong to weak~ this does

not give s.very aeourate ?alue. Thus Penney (BM.37; RC-260) found for air;

( aee also

7J’@tot .18 .3s .52

R/R
W, (?.Penne~land K~2J. K:d;

The energy dissipation froma

061 ,>64 .64

point-souroe explosion accbrding to the

Taylor theory is not very accurate since the rate of dissipation of energy is

still appreciable when the overpressure is a few atmospheres. This is true

beoause the large area of the shcck front at the lower pressures nearly aompen.

● sates for the muoh lower dissipation per unit area of the shock front,. llnfort~.

nately the similarity solution of the point-souroe explosion is not valid 6s

far as this. Nevertheless numerical integrations have sucoeeded in evaluating

the blast wave to sucha radius that the overpressure is nearly as e~ll as ~ii the

limiting radius of military importance. The total dissipation at the stage

where the overpressure is of the order of one atmosphere is about 80 percent of

the energy release. Suoh aXlestimate of oourse only applies to the highly

idealised system envisaged by Taylor,.

Other numerioal estimates of the energy dissipation in the blast wavs

from an explosion oan be made. Experiments in air on bare charges have 6UC.

oeeded in contributing oontours of the shock front at various times. Numerical

integration over the shock front at various times have shown tinatthe energy

dissipation up to the stage at which the overpressure is a few pounds to the

square inoh is roughly equal to the usually aocepted value of the chemical energy
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of the charge0 Since the blast x%ve at this”ata~ St,il.~ ~ ~~ erlorgycontent
● m ●

●
● :

of about one quarter of the chemioal energy, there is an appa~ent discrepancy

in the enerGy balance. The most likely explanation is that the extra energy

results from afterb~rniq of the products of the explosion at the early st%es

when the

defined,

interfaoe between the explcsive products and the air is not sharply

because a sharp interface would be unstable.

The ener~J dissipation in water can also be calculated usixq purely

theoretical results on the shock-wave pressures near in. Roughly thirty percent

of the chemical energy is wasted irreversibly in heat by the stage that tho shock

pressure is of the order of one ton per square inoh~ i.e., at approximately

&4) VON ?ViW?iAl!NTHEORY OFRLAST WAV3S22)(GR3ATER GENERALITY BUT STILL NITH

SIJ.iIL/iRITY).

●
Von [Ieurnann has developed a theory of blast waves whioh is slightly more

Ueneral than the treatment of either Taylor or Penney since it is applicable to

one-, two-, or three-dimensionalproblems and can be used with general boundary

conditions, For example$ it would not be necassary to have constant density out=

side of the blast w&veO However, to illustrate the method let us confine our

discussion to the same spherical expansion problem treated by S, 1. Taylor (see

last section)co Yor this purposes let us define:

R = blast wave radius

r. = co-ordinate of particle at time t = O

r = co-ordinate of particle at time t = t

J = ratio of kinetic to internal en&gy of particles = $ U%

Von Neumann then seeks a so~ution satisfying the similarity conditions:

r@ ‘Z(J)
f

(342)
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He then takes t and J as his independent“var~hf%s.; ‘~ku&?:
●:s ● *9

dro = Z $; dt +RZ’ dJ

‘~tdt + Ry’ dJdr”y —

or eliminatirq dJ

dt

between these equatiOns$

Therefore:

u = (dr/dt)ro = {dR/dt) [y- zy’/z0]

(344)

(345)

(347)

and

(ck/dro)t = y9/Z’ (348)

For strong shook Waves$we have the boundai-yconditions at the wave front:

J1 v 2 dR 2
= P/Pi = P2/Pl “—

l+y ()z
2

u dR=u2=——
l+y dt “ E

12em= -
“2 2U2= ‘&J?. ( %R Y

P/P1 = y = (Y+l)/[Y-1) J

In addition to satisfying the boundary conditions, the functions y and

must satisfy

1)

2)

3)

the four equations:

Equation of continuity,,

{350) ‘

Equation of adiabatic motion (after shockwave has passed).

P/P2 = (P/P~)Y

Equation of state

(351)

(352)
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4) Equation of conservation of’c&g&
f
: This ~~og~~~erwith the

●9 *
equation for the adiabatic motion is equivalent to the equation of motion .1

lie-willdevelop this condition later., First, use the above equations together

with the boundary conditions to express E in terms of Z and y.

Then

‘= * “-= - (fi)y”’
= G+)w’(z)’(%)’-’($)’
= H-)(9’ ($$)’01s#.

I

, (i53)

This equation gives one relationship between J and f, Z, fq, z‘. NOW to

get the total energy in the system. Etot, we perform the intogrationt

But

.

Therefore

n
Etot = 4n

,so P(E + U2/2) r2 d,r (355)

dJ = dr/Ry’ (256)

.

P=P1 z% ‘/y~y’

rz = R2y’

E+u2/2=E(l+J)

~

%ot’ = 4n
i

p~ 3(1+J) E3Z2Z‘dJ
J o
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G(J)= (’++) q)y (~)-~2220 (l+J) :“

=[1/2)(+ 4- 1) Z2ZQ(Y- ~)’

i

1

%oi = 4n pl R3(d~~/dt)2G(J) dJ
o

!

1

= R3(dR/dt)2 4n ~ Pl G(J)dJ

o

(356)

(359)

If the gas extends to the center, Jo is .~ero. Tho equation of oonservati.onof

ener~y states that Etot is constant ~th resP@ to time+ The only WELy this is

possible is for

R3(dR/dt)2 = oonstant

or

(360)

This result is then the same as in Taylor’s theory.

?he total energy of the ga~ lfing within a small sphere whose radius

is determined by the oondition that the ratio of its kineti.oto its potential

energy is J is given by the equations

J
Etot (J) = 4nR3(dR/dt)2

s
p~ G(J) dJ

Jo

The rate at which this gas does work on the surrounding gas

4nr2pu = - (
dEtot(J)

)
== d Etot(J) ‘&l

-%--- ro dJ ()~r 0

(362)

is Kiven by:
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(~)
Zz Z Z (l+J)
Y’

(365)

(s66)

(367)

.== (Y.*)
dt \

SO that uehg Eg@Aons (353) through (368),

becomes:

E ~ Y+J
ZYQ Y-1

And substituting this into the equation for the

canceling and

z 3(’-1)

(-)

=

Y

conservation

()J+l 2

T ~

(+7”.+ J

Y- 1’

Solving these two equations simultaneous lYS

in the oosnpletelyanalyticfilform:

(368)

Pemranging

(369]

of energy;

von Neumann obtained

(370)

y and
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(371)
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(372)

At the origin, J is mro.

In case the problem is q dimensional instead of three dimensional~

,theequation of continuity and the element of volume in the integrals are

changed. Otherwise one method remains unohanged. Kynch has used this method

to oonsider the sffeot of explosions in a medium of varying density.
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(25). BETHET$ EDIFICATION OF”W.K.B. METdOD (~iW~KSHOCKS, NO SI~flLAl{ITY)

Leoture by Bethe

Bethe developed h semiacoustical method for treating weak shoalcswhere

no similarity conditions are possible., His method is similar to the well-knu~

W.KOB. method of i’yantummeohanics. It is based on acoustical theory as the

zeroeth approximation.

In acoustical theory, the overpressure is made up ofa wave traveling

outwards and a wave traveling inwards. Thus:

P“P~ = fq(t-r/’c)/’r

The factor l/r is due to the

+-go(t +r/c)/r (373]

geometrical attenuation of the pressure. Here f“

and g“ are arbitrary functions. !lhewave fc is traveling outwards sinae its

● ,

argument re~ins constant when r/c increases at the same rate as to Similarly

g’ represents an incoming wave. Eq. (3?3) in the most general spherically

symmetrical solution of the acoustical equation;

(374)

The material velooity , u, is given by the relation:

u= (f’ -g’)/pro +(f +g)/pr2 (375)

Notice that the inverse square terms in the seaond bracket exist even for

incompressiblematerials with infinito velocity of sound, In the acoustical

theory, waves always retain their shape sinoe the small variation in the velocity

of sound for the infinitesimal pressure differences considered is negleoted.

This is not true in any actual case, even for very weak shocks.

‘theRiemann method could be used for very we~$ shocks in one dimension~
●:0. ●:* ●** ,*

but the additional term, 2up/r , in the equationw’f c&&?nu$&y~ma&~ it
●. ..* ● **bcc,s,*

●9* *
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impossible to use it for the case of any sort of spherical wave.

Bethe has developed the W.K.B. approximation to treat those cases

where the half wave lengths L , is very small compm-eri-withthe distanoeO rp

from the wave to the origin. Under thee conditions, 2u/r will be small corn.

pared with bu/dr , and generally, in the disturbance, the hydrodynamical

variables

that weak

values of

change rapidly oompared to r,. With those assumptions, Bethe showed

wavolets whioh propagate with the velocity c + u mintain constant

the ohnracteristic~ (c + u) r. la q dimensions they xould have the

characterbtic (6+ u) rfq-1)/2. As in Eq. (305), we have:

U=pxy-q(c -q) (376)

Ahe&d of the shock wave> .a - u = OS sinoe both o and u “arezero. Directly
*

behind the shock vave according to Eq. (306)S a - u = O through terms of tho

order of ($.-1)2. Farther behind the shock, (u.u)/a beoomes of the order of

L/r due to the influenoe of a term similar to the last term in Eq,(375). If

terms of the order of L/r are neglected we can assume (as in Penney’s treatment)

that everywhere:

au= (577 )

Thw time, t , for a signal traveling tith the volocityu + o to go

from Rl to R is then Siven by <Jitirelation;

Now at sufficiently large distances from the origin where the inverse square

terms have become ne~li~ible in the acoustical case, the veloctiy of a given

wavelet deoays in the following manner:

u(r) = ti.r-(q-1)/2
● ✎

● ✎☛
●:0 ● ** .*

●
●

: :
: .0 : .. :; (379)
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Here !U is a constant characteristic o~.$h~ &e@t%n~ ~q is the nwber of
● **.

●
9 ●** ●

.:.:.0 ●0
dimensions of the

cylindrical wave,

problem under consider~tion (q = 1 for a plane wave, 2 for a

and 3 for a spherical wave). Remembering that u is small

compared to c1 :

R

= R.R~ (y+l)@

[ 1&w2=R1(=l)/2—.—. (Emept for q = 3)
cl c:(3=q)

(for q ~ 3)

Formation of Shocks

Thus if two parts of.a wavelet initially have different mass velo.

●
cities, they will travel at different velocities, (namely faster when u and u

are larger). This mak6s the compression phase of the wavelet become steeper

and the rarofaction part baoome more extended. These effeotd will be more

pronounced in the one-dimensionalthan in the two-or three-dimensional cases.,

The following example will make this olear.

Suppose that at the time t = O,”we have a sinusoidal pulso traveling

outwards. This is shown in Fig.@a).At a somewhat later time. t, this wave

has assumed the shape shown in Fig,27(b)andafter a sufficiently long time it

assumes the limi~ing form shoxn in Fig.27{a).These drawing would have similar

shapee if we plotted the velocltiy of Sound$ c, ve=~ position ratherthan

pressure versus position. E the amplitude of the waves in small and they

have travellod sufficiently far so that

the material velocity can be neglected,
.

follows that:

U’(P-Pf)/pc~(P-P4

the inverse square wntribution to

then from Eqa. (373) and (375) it
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the pressure

cnwrpressure

27

the

at

greater the material velooity.

A iS initially pm= PA -P1 and if the

Thus the greater

If the

position of A at this time is RDS then:
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Sinoe the wave length is supposod

follows that ‘@l = .’~~c~ . At

the mplicatione of Eq. (380) for

of dimensions.
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to be small

the points

.;. 99* ● *

compared to the distanceRm, it

F andD,W= O .. Now 00118i.dOr

the behavior oi’waves on different numbers

After the time t, the point A has moved the distanoe RA - R[~l

given by the equation:

(exoept.for q = 3) (383)

(for q = 3)

In this time, the point F has moved the distance RF - ‘F1 given by the

- RF1

when A overtakes F1

(3M)

(except for q = 3)
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‘his when q = ~

(385)

Whenq=2

cltAF ‘&’L% -{$)+ @y & (32 (386)

When q = 3

(387)

Here the terms
()
L/2 are neglected sinco the time for the shock to

be forxnedstAF , is considered to be long compared to the time for a signal with

the velocity of sound ‘cotravel across the wave. This approximation is inherent

throughout the theory, Better results would not be obtained by the inolusicn

of these terms because of compensating errors which will be explained later.

Thus it takes progressively longer time for a shook wave to develop in one~ two,

or three dimensions. In more than three dimensions shock waves only ocour if

[Y/(Y+l)l {URA1) (N1/Pm)

is small oompared to unity. .,

Similar developments oould be carried out for the time required for

* D to overtake B. The time for this second shock oto:d~el~ :i&;%jProxi~te~Y
● * ●

:0

the sameas tho time for tho frontshockto dgvol”~.*~*.$ft~”.t~~~p&ok8aro fornwd$
●

✚

b* 9** . . ● .*
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the linearity of u with ovmprestmre insures that *he pressure ic the pulse

will tecome linear with distance as showu In Fig.27(s).Sincethe front shock

moves with the velooity oharaoteris%ic of the peak pressure and the second shook

moves at a slower velocity characteristic of the initial pressures the two

shocks willseparato and the wave will spread.

In tho ease of’a periodio waves the wave length remains invariant.

However if the wave is originally sinusoidal.,it -fillbeaome saw-toothed with

the peaks corresponding to the original positions of maximum pressure. The

waves cannot spread because the shocks have the samo pressures and therefore

travel at the same velocity.

Deoay of Shook ‘Waves

Next we can consider the decay of shock waves from two different

standpoints. The first makes use of this semiacousticel method and the seoord

makes use of the thermodynamical argumnts stated previously. Both lead to the

same results. Consider a shook wave as shown in Fig.27(a)J.fthe peak pressure

is p2 , the velooity of the shook front is given by Eqo (296)$

or expnding:

A
B

D

(a)

(389)

(390)

Here u is a property of a

wavelet whioh may be super.
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The time required for a shock wave to go from Rl to R iS then given by the

equation:

The time required for the overtaking wavol%t to reach R from its i~~tia~

position Ri ia:

●
Xhen t is smalls the

when t is large, R

the difference between

the difference bot~een

overtaking wavelets oome fs>ompositions R“1
close to R1 ~

is

R~

R1

sufficiently large compared to the wave length that

and R1 is negligitleo Thus we oan always neglect

and R~ and equate the travel times of’the shook wave

and the overtaking wavelet’. This shows the typo of approximations which=e

inherent in this rnethod~ The distanoes between various parts of the pulse are

supposed to be small compared to the distanceto thecenter. This iS usually

a good approximation in the case of a blast

it would not be a good approximation in the

wa-vefrom a high-explosive aharge

ease of a slow gas explosion.

but
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Taking the derivative of both
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sides of this equation:

Hs/J R-(WW% L
3-q

d
[(— ~,~(3-W2Q@””W2

)} (except for q = 3)
dR ●

4

[F?

3- -(’4-1M + (R(3-q)/2eR1(3-M
‘s 2

@
)1

~ (394)

hj~- 1 = 2 $“(N/Rl) d@/dR . 2iA2”1

From which it follows that

(for q - 3) (395)

.

(except for q=3) (396)

(R~I)) (for q = 3)

So that for values of R large compared to RI o

3ut right behind the shook front, the overpressure P2 . 21 is given by the

equation (from Eqs. (296) and (297):

P2 - PI = (Yl@l) U2 = (YP1/Cl)oR” ‘q11)/2

So that at large distances

(399)

(400)

- i/R(tn.R)l/2 (forq = 3) (401)
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For q> 3, it is easily shown that

asymptotic value at large distances

(PZ - P1)/P1- R
-(q-1)/2

Lo at t~e sho~~ front r~ac~es a finite

so that

(for q ~ 3) (402)
,

The decay of the shock pressure is, of course, faster for higher

number of dimensions~ q, for purely geometri.oalreasons. However, while shook

waves in more than three dimensions would deoay just according to acoustic thoory~

they decay faster than aooustic waves for q < 3. for q ~ 3$ the difference

is only the slowly varying faotor E“. For two dimensions~ the decay of

a shook wave is as R“3/4 while aooustio waves deoay only as Rl/2 $ for one

dimension* an acoustio wave would retain it6 amplitude but a shockwave decays

The three dimensional shockwaves produced by explosions start with

little similarity to the sinusoidal wave illustrated in F@. 27. In the re~ion

of praotical interest, there is a sharp positive pulse followed by a long

negative pulse.To a fair degree of acouraay, experimental results on three-

dimcmsional shock waves in air oan be represented at any tin~ by the equations

(403)

where R is the position of the front, r is the position at which the

pressure is observed, and L~ a half “wave length” which depends mainly on the

explosive energy, Eq. (403) is empirically a muoh better representation of the

pressure distribution than the linear relation between p-pi and r which would

follow from our quasi-aooustic theory.

● Relation Between Duration of filse and FYont Pressure.

l?romour theory we can ob~~~n{a~sel~l~~~;~~~j.onbetween the Iengtinof
● ● ●O
$@ 000:,0,:, ::

a shock pulse and the peak pressuree(SeeOFig. 27!:” “&t us oonsider the region
● ** 9.00●O..:
● O. :
●* .*. ● ● . L
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between O and A separately from the region between D and O because the

wavelet emitted from O always maintains a pressure of P1 and no energy flows

from the region behind O into the region in front of 0. We 8ha11 sUpp098 t~t

Lo is the distanoe between O and A at the time % ~ O and L is the dis-

tance at any subsequent time. In accordance with the seni=.aaoustictheory, we

assume the pressures p, at any point in the shook wave to be linear with dis-

tance from tho shook front, i.e., we take$

P- P1’=(P2 -PI) (~-~+r)/L

In tho time to the point O moves a

RO=olt

And in this time the

1

shook wave moves

1

But for very large values of R suoh

R (ci.Eq. (393)).

distance R~ given by the equation:

(406)

from RI to R given by the equation;

ttir
-.(qOl)/2ti (406)

that El is negligible oompcmed to

Therefore the length of the wave beoomes

For large Rs we may negleot Lo ~ if at the same time we express @in terms of

the front pressure fromEq. (399),aYg~t~ ●0. ..s● : :.
●

:0
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u~=..L..L. P2’”P1 ~ (for qC3) (410)
(3-q)y PI

Thus the half wave length, L, varies approximately as the distance traveled$ Rg

times the ratio of the overpressures P2 - pl ~ to the initial pressures PI .

If we takeinto acoount the behavior of the pressure from Eq. (400)s we find t~t

the wave spreads so thatz

L - R(3”d/4 (for q 4 3) (411)

For q ‘3, we get corresponding to Eqs.(409) and (410):

(412)

● At sufficiently large valuesof R, takinginto acoount tine faot that the front

pressure is nearly irlverselyproportional to R, this may be written as:

“t;;) Rp+%)‘“(-) (q= 3) (413)

For air with y= 1.4

m= .86 R (P2 - p~) 1’?n[iq/(Q2==-PI)L

‘. P1

For large distanoes we may use Eq. (401) and find:

Ld$mr & J’$[n V’(P2==PI)]

Thus the three-dimensionalwaves spreadslowly-

(414)

(415)

Experimentally, the positive impulse is frequently measured~

I
J

= (p - pl) dt (416)
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Here the integration is only to be taken over

P - PI is positive. For the linear relation

The energy-of the shock wave as it

E .~flz s(P - P~)u dt
o

And since from !lq.(381):

It follow6 that w

s~& “;
E=— (P - pl)2 dt

Plcl o

that part of the

(404) between p

pulse where

and li-r~sin~e

= (P2 - PI) @~l (417)

passes R may be written:

(418)

(381)

(419)

●
So that for the linear relation (404) between p and R-r,

2L/c 1
~ = 4nR2 =2

(P2q) \
[i

Olt 2
“l-_

~t ~~ 4%32
(P2 - P1)2L (420)

Plcl L. 33
0

From the fundamentalnotionsof energydissipationtogether Withom

previous dimensional analysis, we can obtain another relationship batween the

energy~ distanoe, and fI’Ontshock pressure whloh doesnot involve the wavo

length or duration of the pulse. As we saw in Eq. (291), the energy dissipated

when a bl.ad wave passes through a unit volume of lnatteriS Pl T1 6S0 Thus for

three-dimensionalwaves, when the shook wave expands from R to R + dR ~ and

passes through a’volume of

by 4nR2 dR pl T1 AS or:

dE/dR= . 4xR2p~

4/~2 dll,the ene?gy,E, of the pulse is decreased

T1 AS (421)
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And since%

Cv T1 = P@P1(Y-l~ (422]

it follows from Eq. (73) that”at the $ront shock:

TI AS=
y:l (P2 -P3)2

However, for a linear pulse there

approxiwtely the same strength.

(423)

is both a front and a back shook v:avoof

Therefore the entropy chango at the baok

shook wave is approximately the same as at the front shock wave and so alto.

~ether the change of energy of the pulse with distance lxcomosx

dR

● But from Eq. (401)s for

P2 - PI =

PI ‘

Here a is a Oonstant.

three-dimensionalwaves after a long time;

Thus:

And integrating:

E = 4n(*)+13,3 a PI (~n R)-1/2

After eliminating a :

E=% ~3

*
Equation (427)

in the shook wave varies

(426)

(426)

(427)

(428)

is Partioularlyusef%l beoause it shows how the energy
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energy, a pkononenon first pointed

more the constant in this equation

of the original energy, EOS of the

out by Penney 03M.37, RC-260)~ Furthor-

is somewhere bcdnvecmone half and one third

explosion. Assumi~ that it is one third~

The energy is also expressed

Solving gqso (420) and {428]

in terms of the half wave len~th by ~q. (420).

for the half wave length:

This relationship is the same as Uq. (413) whi.chwe obtained previously on

purely kinematio oonsiderations~ This shows that in the limit of large dis-

tanoesc t-hekinmati treatment is consistent with the energy relations. How.

● .
everg there is considerable danger of using the energy relations for moderate

pressures where the pulse has not yet roaohed its limiting linear form. For

example, in this region of.interest~ the pulse has moro nearly the semi=

empirical form of Eq. (403) and the baok shock has not yet developed. Under

these conditions, the energy dissipated is one half that of the linear pulse

(for the same front shock pressure) and in the relation between energy and

peak pressure, Eq, (428)S the numerical coefficient is one half as large.

Relation Between Peak ProssureS Wave Length and Energy.

In order to get a ~raotical relation between the various quantities

characterizinga shook wave originating from an explosions it is indicated to

use the semiempirioal shape of the pressure pulses Eq. (403)s which is found

a to represent fairly well the pressure as a function of time at moderate

pressures (of the order of 0~1 atmi,
●● ::*

pulwa ret ‘Qo.. ●o#●ee●
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10 It has a positive pressure pu2s5 ~f fiela%i~sk~%”hortduration

pressure.

2. The total impulse.~pdt~ is zero.

These two features of the pressure distribution oan be made plausible.

Penney has shown (BN.37~ RC.260) that the impulse, JpdtO must go to zero oom.

pared to pL~lcl as the wave progresses outwardei This follows simply from energy

conservation. As regards the sh?pe of the waves the positive pulse inoluding

the shock frqnt is formed immediately by the explosion~ it is therefore

ori~inally quite short. The negative pulse is for~ed rather late [BM.370

RC-260) in order to filfill condition 2 above. At the time of formation, the

negative pulse involves smaller deviation from the normal pressure pl than the

positive pulse, and this feature is preserved down to moderate pressures. More.

over~ at the time’of formation of the negative pulse and spatial dimensions of

● ▼☎shook wave are quite kr~:e so tjh~ttha ini~i~l lend~h of ,

the negative pulse is much longer than of the positive one. The back shock

wave develops only very late and is extremely small in the region of moderato

pressures; i% iso thorefore$ not taken into aocount at all in the wave sluipe

Eqo (403]0 !fhesearguments are m~ant to explain only the qualitative features

of the wava shape Eqe (403)j the aotual analytical expression is simply a con.

venient way to represent a wave of these properties.

The problem now arises how to connect the wave length Lo with the

wavo le~th L of the kinematic theory. Lt, just as L, represents the length of

the positive pressure pulse. We have already pointed out that the original

langth, So) of the positive pressure pulse, is likely to be quite-small. &zol!’e-

overj it is easy to see that the contribution of the spreading of the wave is

aotually somewhat smaller than is indicated by the seoond term of Eq. (413).

This is due to the fact tkat the end,:o~tl~ep~s>tivapressuro pulse (point O .
● ● m:0 c :0 ● ●:0 :,

in Figure 27) actually moves fasfe~O%Mfif?it~.~.f18.&~erturbedsound velooity 01,,
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The velocity of this point is c + u. Nith the pressure equal to plg the sound

velocity c = c~o However, the material volooity u is not equal to zero due

to the afterflow (terms of l/r2) which have be& neglected in our sernlacoustioal

theory. These afterflow terms are absent at the shock fronts therefore the

propagation velooity of the shock front is just as we have assumscll,whereas

the propa~ation velocity of’point O is greater than assumed. This means that

the swond torn in Eq. (4L3) should aotually be 1sss. We believe that it is

a GOOC1approximation to cancel this correction against the initial wave length LOC

and therefore to identify L1 with the value L given in Eq. (430).

If we substitute the semiempirioal shape of the pulse (403) into

Eq. (420) andperform theindicated intog~ation: ~

*

~i
E“— (P2 -P1)2 L*

p~c$
(430)

But after identifying L’ with IIin the kinematic treatwent we have by Eq. (413)2

“=($-3R(Y) Wz%i) (431)

Eliminating Le fkom Eqs. [430) and (431):

(432)

And making use of Iiq.(429) for the energy:

‘(-) F’EiH..c=il’” ‘:A ‘*3)
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Or if’ R is measured in meters~ y = 104, E. is in equivalent tons of

TNT and pl is one bar (or atmosphere):

And from Eq. (431)

L’ = 16 E1~
o

I$n [PJ{P2-PJ

(434)

(435)

These relations are extremely useful

moderate to low distanoes where the

for practioal considerations of blast at

similarity solutions fail.

Eq. (416)

Nhen we substitute the semi-empirical shape of pulse (403) into

W8 &et for the positive impulse:

(436]
.

Tho “effective length” of the pu3.seis defined as 1 C@2 = p+ Thus the

“effective length’!of’the pulse is LQ~o x .368 L e
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