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I. RILsMANN FETHOD

Lectures by J. von Neumann

In this treatment we shall consider the hydrodynamics of come
pressible fluids. In the applications in which we are wost inﬁerested, the
motions are so rapid that there is not sufficient time to transfer an aopre-
"ciabls amount of ijomentum or energy across streamlines. Therefore we are
justified in neglecting viscosity und heat conductivityo

Neglecting heat conductivity assumes that X J dzT/clx2 is small
conmpared to (pu?/g) du/dx. Here .{ is the coofficient of heat conductivity,
J is the mechanical equivalent of heat, T 13 the temperature, g is the
gravitational constant, and u 3is the velocity of the fluid. 1In all of the
applications that we ere interested in, this approximation is really satis-
factory. For example, if iron were acceleruted from rest to 107 cm/sec
vejooity in 1% ems, and if the gradient of the temperature gradient were
1000°C/6m?, then the heat conduction term would only be 1/500th the value
of the kinetic term.

However, it is someswhat more difficult to justify the reglect
of viscosity. This corresponds to neglecting u deu/'dx2 in comparison with
the pressure gradient. Here p iz the usual coefficient of viscosity. If the
pressure gradient is 102 bars per cm and the grudient of the velocity gradient
is 10h per sec per cm, then for water noeglect of viscosity corresponds to
neglecting & term of the order of 200 in comparison to a term of the order

of 1011 1),

1) See Durand, Aerodynamics, vol. III, p. 219, for a discussion by G.I. Taylor
of the effect of viscosity and heat conduoction on the sharpness of a shock wave.
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For solids instead of viscosity the resistunce to plastic flow appears and
is sometimes important. However this will not be oconsidered here. (See
W. G. Penney, LA=-155.) Radiatiorn is neglected because it would introduce a
number of additional complications.

1. KULERIAN AND LAGRANGIAN FORM OF I'HE EQUATIORS

There are two ways of describing a hydrodynamical ensemble., In the
Eulerian system, we consider the conditions of pressure, p; demsity, p;
temperature, T; etc. of the fluid passing a fixed point in space. In the
lLagrangian system, we see how these conditions of the fluid change with time
when we follow the motion of the individual particles. Let us derive the
one-dimensional equations of motion for the two systems.

(). Lagrangian Form of Equation of Notion

Bach particle is designated by a value of the symbol { o
Here { can correspond with the position of the particle at the time zere, or
with any other arbitrary convention. A%t any time, t, the position of this
particle is designated by =x( { o) o The motion of a particle must satisfy
Hewton's eguation:

M d°x/at° = F (1)

Here, our particle consists of the fluid elements lying between { and
( +d § o The mass of this particle is M = p d { o The force acting
on it in the X direction is the pressure at f minus the pressure at
[ +a { , 0or

F=a (Bp/af ) at (2)

|

[ X ]
®oeoes
[ ]
evreoco
[ XX 14
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S, P
And Equation (1) boodmes o : 3 $:
a%x/at? = o (1/p,) (3p/2%)  (Lagrange) (%

Hére we are using the usuval hydrodynamical convention of letting the total
derivative with respect to time mean that we are following the motion of
the individual particles.

(b)o Fulerian Form of Hydrodynamical Equations

The Euleriap form of the hydrodynamical equations is convenient

when we are concerned with the properties of a fluid passing a fixed point.
Let u{x,t) be the velooity of the fluld relative to the fixed point. Then
u = dx/at and

a®x/at® = au/at = ou/ot +(dx/dt) (6w/ox) = du/Et + u(eu/ex) (L)
In order to derive the egquation of motion, we consider as . our particle those
£luid elements which lie between x apnd x + dx at the timé t< This particle
ki« the mess, M = p dxo The force acting on this particle in the x

direction is the pressure at x minus the pressure at x + dx or

F = o(dp/éx) dx. Substituting these relations into Newton's equation:
ou/dt + u (du/dx) = - (1/p) (6p/6x) (Buler) (s)

The equation of continuity can be derived in the following manner-
Consider the fluid entering and leaving a little oclement of wvolume lying
betwesn x and x + dx> In a length of time, dt, the mass of material entering
from the laft is pu dt and the muterial leaving from the right is
i pu + [&(pu)/BzJ dx} dto Thus the net increase of material in this element,
(ep/ot) dx dt, is o [o(pu)/gx dx dt and the oguation of continuity is

op/3t = = ofpu)/ox (6)

APPROVED FiJR :d?uéu € RELPASE
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A third eﬁ&ktiog that we reuire is the conservation of energy.
The work‘w?xioh is done in unit time on the fluid flowing between x and
* + dx is equal to the pressure times the velocity at x minus the pressuro
times the velocity at x + dx or o{0/d0x)(up) dx. Therefore the work done
on a unit volume of gas in unit time is c(p/béxup)a Héwaver a unit mess of
material occupies a specific volums, V = I/bo Thus the work done on e unit
mass of material in unit time is - V (6/5x)(up)o By the conservation of
energy, this work must be equal te the rate of change of kinetic plus in-
ternal energy of a unit mass of material.. The energy of the system,

E (per unit mass) is given by the relation:
E =(1/2u? + By
Thus the equation of conservation of energy is expressed by

@/d@((é/?.’) w? 4+ Eint) = é/&b + u(b/&x)) (§1/2)u2 + Eint)

(7
=-V (3/0x) (up)

2. BEHAZ;QUR OF ENTROVPY, RELATION WITH MECHANICS, THERMODYNAMICS,
AND IRREVERSIBILITY

In addition to the equetior of motion and equation of continuity,
vie have the equation of state und the equation of comservation of energy.
These four equations should be sufficient to determine the four varinbles
P, Po Tpb and u as functions of position and time., However, there vas
oonsiderable confusion up to a very fow yeara age as to whether the fourth
ecuation should be the conservation of energy or the constancy of entropyo

As we shall show, as long &s the fluld motion involves no abrupt changes in

o0 o
e o o ° [ °
e o o e o [ ]
o e oo e eo o 0o — E—
s
L} [ ] ° * [} LI ]
o0 000 €00 0600 000 (X )

N o o o
o o ¢ o 0 o

. oo .
L3 .
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° °
pressurs or velocity:: LRe 3’0115232"@1*615»5 of energy implies the constency of

entropy and vice versa. But whonever an abrupt change, or shock wave, occurs
the conservation of energy leads to a definite change in the entropy-

(a)+ Constuncy of Entropy with Time for a Fluld Element (Assuming
No Shock Waves).

In fluids whose elements remain in thermodynamical equilibrium
during the motion, changes in state are reversible and the entropy of a
fluid element will remain constunt with time. The fluid elements do nog
remain in egquilibrium during the motion in which the fluld passes through
a shock or when the motion is too rapid to maintein either chemiscal equilibrium
or to maintain equilibrivm in the rotational and vibrational degrees of

frecdom of the molecules (see Lewis and Von Elbs, Combustion, Flumes, and

Explosiong of Gases, Cambridge, 19%3 o The fact that ontropy is conserved

whenever the changee in state are reversible may be verified in the following
manper. The internal energy cum be expressed in terms of the spscific volume
and the entropy, S (per unit mass). Thus the equation of conservation of

ensrgy (7) becomes:

((a/at) + u(b/bx)) (3of + B ) = -V(/ox) (up) (8)

ind, carrying out the indicated operations:
u [(bu/bt) + u(bu/bx)] + (3 Bypy/oV) [(bv/o’t) + u(bV/bx)]

+ (> B/ Dy [(28/66 u(as/ox)] = -Vulop/ox) (9

- =~ Vp(du/ox) -
\ : .:o oEo Eu .3. 1Y H
APPROVED FOR PEBLIC REL BASE
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But from the oquatigws af.malilon (S)
. s o o
[ ]

.u [(ém/bt) + u{du/ox) =~V u (dp/ox) (10)
And from the equation of ocontinuity (6)

aW/6t  + u(ov/ox) = - 1/p2 [op/at + u(ép/éx)]

(11)
=1/p (w/fox) =V (du/dx)

Then remembering that for a reversible change the internal eunergy is the

usual energy, B, of thermedynamic systems (Thermodynemiocs, Lewis and Randall,

“cGraw-Hill, 192%, seoc page 16k), it must have the properties:

(-gn-v_qm) S ZT o p . (22)
and ‘
QQ_E&.OE 9 v = T (13)

Thus Eq. (9) becomes i

o bu 28 dSt _ > du
vl o gar[Beoflen Eowl ah
or
&S o3 as
T [ﬁ-o»u-g;]:: Ty =0 (15)

From Equation (15) it is apparent that the entropy of each particle
does not change with time. If the sntropy had the same value throughout the

whole fluid at any time, it must maintain this value for all subssquent timas.

APPROVED EFOR PUBLI C REI EASE
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3o KIKMANN?S MBTHOD OF IRTEGRATION.IONE DIMENSIOBAL AND ISENTROPIC),

Riemann developed a very useful method of integrating the equations
of motion for one.dimensional isentropic flow problems (see Rlemann®s Collected

Papers, Durand's Aerodynamics, Vol. III., or the first edition of Riemann-Weber) -

Let ue suppose that initislly, the specific entropy throughout the
fluid is a comstant, $,. Then, from the thecreom of the lasi section, we know
that for all subsequent tims the specific entropy of the system remains S,o
(This is not true after a shock wave has developed, but we shall oonsider such
cases later:) Since the entropy is constant, we can write the equation of
state in the form of the adiebat:

p = P(V,S,) (16)

. The equation of motion (5} becomes:

o ¢ [ oP v
B oo 2o ¥ (a7)
[«

And the equation of continuity (6) is:

b3'4 ov 0
R =V & : (18)

If we consider any function o (V,So), then by virtue of Eq. (18) and the

constancy of entropy throughout the system,

o 3. {3 [  av]_ _fd) du
[gg =0 = (S-V)So [’gt- +u -é_z-] = V(S?V)s 5 (129)

0

)

APPROVED FOR PUBLY C RELEASE
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Srpeps, T

Adding together Eqs. (17) and (19} : e~

3 S - oP oV (bo él‘.l.
(Fg+u3;) (‘u +°} == V(Wso = TV é’\?)so dx

\

Riemann's trickazvs.s to choose o 3o that

OP ov dc)  &a
= \V/sp Bx "\8V/s, Ox

For in this case the rightohand side of the eguation becomes simply

v (%%)se %; (u + o)

This is accomplished by letting

(5 -/, -/
Vs, * 3V/s, ve {3p/5, v

Here ¢(V, S,) is the locel velocity of sound

P
© 3%/,

The value of o itself is obtained by integrating ig. (2%)

Vo o

c

o=l gad= %sg‘g‘
v Po

(20)

(21)

(22)

(23)

(2L)

{(29)

From the equation of state of the adiabat, both ¢ and o may be determined

as functions of V.

2) See G. I. Taylor's article in Durand‘®s Aerodynamics, Volume III, p. 215.

APPROVED FOR BUBLI C RECEASE
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Restrictid@'ou?sélveg LX) fii% definition of o, Eq. (20) becomes:

(%’5+u%>(U+a)=+V(§%>So%Z (u‘*‘-‘)=°°%i? (u + 0) (26)

Or tranaposing *

{g§'+ (u +¢) g;;} (u+a9) =0 n

Similarly if we had subtracted Eq. (19) from (17) we would have obtained

the relation:

[%ﬁ. + {u - c)%;} (ueo) =0 (28)

These equations have a simple interpretation provided that we
change our frame of reference. Instead of observing tho conditions of the
fluid at & fixed point as in the Eulerian system, or following the motion
of the individual particles as in the lagrangian system, we now observe the
changes which take place in the fluid when our frume of reference moves with
the local velocity of sound with respect to the moving fluid. In order to
move with the velocity of sound in the minus .. direction, our frame of
reference must have the velocity u - ¢» In order to move with the velocity
of sound in the 2z dirsction, our frame of reference must have the velocity
u + Cc

Equation (27) states that if we sturt at any point in the fluid
and move with a velooity u + ¢, we will find that the quantity w + 0o
remains constant-

Equation (28) states that if we start at eny point in the fluid and

move with the velocity u = C, we will find that the quantity u = ¢ remains

. Ny

APPROVED FOR PUBLI C RELEASE
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Thus if we know the velooity and density at all points in the fluid
at some time, these two equations serve to define the values of u - ¢ and
u + ¢ &t any subsequent time. And knowing the values of u = ¢ ard u + g,
we als® know the values of u and o separately. From o and the adiabatic
equation of state, we can determine the denslty and the pressure. This in

principle forms a complete solution to the problems of one-dimensional

e

isentropic flow.

Tt should be emphasized that the Riemann method is only appliceble
to one-dimensional problems and canpot bs generalized te two or three dimensione.

Lo DISCUSSION OF SOME EXAMPLES WITH RIEMANN'S MBTHQD

(a). Method of Numerical Integration in Goneral Case

The Riemann method can be used in the following menner to
integrate numerically the equations of motions Suppose that at the time
+ = 0 we are given the veloscity, u, and the specific volume, V, at a set

of points x3, Xp, oo Xjo Vo are also given the equation of the adiabat. We

proceed as follows:

Pirst, we use the equation for the adiubat to calculate

o)
e(V,S,) = /( aﬁ) S

o
ocC
a(V,8,) = fv VeSo) 4y

and then caloulate

From V(z;, ¢t = 0) and the above re¢lationships, we determine

e(xy, t = 0)
i = 10 29 ecoaon
olxg, t =0)
IR
.:o .Eo E:o ete See 00’ ~

(I XY ]
[ )

[ YX X 1]
L

(X211
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oo Soe 000 000 o0 :.
From u(xj, t = 0) and the shove waedeferysing “ho two sets of numbers
e * tes 30°

i-= 10 2‘. esoy, I

ulxjo t =0) o alxg, ¢ = 0)

By ¥

t—

Fig. 1

In the Riemann method we try to construct ths lines along which

n<d-£4 and ne O x gy Figure 1 shows what such a mesh might look 1like
when we integrate numerically. It is easy to find the points of intersection

graphically. From each polnt, Xy, Wo draw twe lines one with the slope
u(xy, t =0) + o(xy, t =0) and the other line with the slope u(x,t =0) =& (X1,t=0) .
Along the first line £y remains constant, along the sccond g; remains constant.

The placee where these lines intersect forms the points X35, Xz, eeeo At

these intersections, we know the value of f and go

e RelEade oL
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e T Il e se e
At x..: (xyps b1p) = 5 (g, WAof 30 8 A
*10° 12e Y120 T 28z Pl for il
1
Amyps typ) = 5 (o8 + 1))
. _ 1
At x,.: u(x2%° taz) = 2 (g5 + f2)
_ 1
o(xegptag) - % ( g’g + fa)

Xnowing the valuea of ¢ at the interseotion points, we can determine the
corresponding values of V and of C. Then using these new values of

C and u wo oan ag?in draw two lines through each intersection point and
determine & new set of interseotion points, etoc, And in taie way we can
carry out the whole integration.

It is interesting to notice that by thia method we canno®% obtain
any information about the fluid motion outside of the rough triangle bounded
by the line .f = f1 and by the line g = g,o The conditions of the fluid
motion within this triangle are completely unaffected by the comditions of

the fluid outside of the trianglec

(b) . Applicetion of Riemann’s Method to Idsal One-dimensional Gas-

The Riemann Method is particularly useful whem the fluid

satisfies the idenl gas form of adiabatg)z

P= k(so)pY | (29)

%) Por many applications it 3s useful to take the adiabat in the form:
. p = k'(so)pY + po(so)

This does not change the resultant fluld motions since the hydrodynamical
equations only involve pressvrae differences.

For other purposes,

p(V = B)Y = k"(S,)
is a useful form, e 2 ot e
o’ : 3 . s >3
00 s0e o4, o:o :.. : Y ~
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Then, sinoe AR IR N E.:. §.§
) -2 _
(%) 5, =¥ K(Slp (%0)
c :ﬁ; p(".'nl)/e = \/;E— (31)

viYo:ls;z

And

-

v -
. 1 |
j A -4V \/’—_ v v(‘\’+l;/2 \/— (Y] )[V?Y‘l)/a v (.(Ql)/a} (“,2)

Since Vo is arbitrary, it is convenient te set V, = Co. The value chosen

for Vo canpnot affect any physical properties of the fluid. Then
2
g = +(;—:i-)c (";'I))

If ¥ should equal %, there are many s*mplifications which

appear. In this case, the velocity of sound is proportional to the density,

Trng—i—. =1 and o =-C, Most substances under very high pressure

approximately follow the ldeal-gas adiabath) with y=3. Under these cone
ditions f = u + ¢ is constant along the curve whose slope is u + C; and
€ =u - ¢ is constant along the curve whoee slope i8 U = ¢o Thus f 1is

constant along the line:

x= =a(f) + ¢ (=)

L) This value of ¥ 18 not to be confused with the trup ratio of spesific
heats, yv', which varies betwoen 5/3 and ). For mple any substance asatis-
fyxng the equation of state pV 3¥'= a1 307 w1)71& 2 'has the adiabat,

= (const) p3.
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And g 4is constant along the line ¢ 3 S

x =b(g +gt (3%)

Solving these equations simultaneously:
b ) e 8 f)
t = _(5_____;,,_.0 e (%5
£ b( ) - -3 f)
e e

u=% (g + £) ()
e g% (g - £) | (29)

Theé? four equations form a complete parametric solution to the equations
of motion., If we know the velocities and densities at the time t = 0, we
can determine a(g) and b(f). EKnowing a(g) and b(f), we can solve (R6) and
(37) simultaneously te determine the value of g and £ for any desired value
of x and to Knowing g and £ we can use Egs. {%8) and (%9) te determine
u and ¢, Then substituting ¢ into Eq. (31) we get V and hence all of the
properties of the fluid motion.

Darboux obtained analytical solutions to the equations of motion
for all values of ¥ such that « =‘§E_§;%. where m 1is an integern' ThLaso

values lie in the useful range of ¥o. The second and third are of practical

interest repressnting very accurately an ideal monotomic gase and air,

respectively.

g X
1 3
2 |1.667
3 1400
L j1.286
5 }l.222

.oo oEo E. ¢ 3° : E
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fallo § : : . : e E
. ooo ose - se,
dbtaﬁne§°°{p%ess10na involving

In his sclubtions for x and ¢, Darboux

dorivatives of & and b up to the order m ~ 1.

(c) Riemann Mctiod Aoplied to Disturbance Coming From One Dirsction

The Riemann method 18 particularly easy when a disturbance comes

from one direction, Let us suppose that at time, ¢ = O, the fluid at points

such that x is positive is at rest and the fluid corresponding to negative

values of x i3 disturbed, In this cuse we shall stow that the lines of

constant u + o are straight lines and mll along these lines the valuasy of

u and ¢ separately remain constant. We suppose that the fluid satisfies

the ideal gas adiabat so that

o = A;Eji ¢ (Lo)

Figure 2 illustrates the problems

5) These equations of Darboux are given in Hadamard, Lecons sur la Prop’gation
des Ondes (Paris, 1902). They amount to the simultan us solutions ol the

following parametric equations:

z _-:(.L, 2_;)“'1 [b(u - :) +au + 0)]

o 00/y

oZ
£~ o eZ
R 7 )

Here as before a 18 an arbitrary funotion of u + o and b is an

arbltrary function of u - o,

dei £6 faEadst .
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Pigure 2

DISTURBANCE EMANATING FROM LEFT

%e must distinguish thres regions. In region I, the fluid is

undisturbed, In region II, the disturbance ia coming from both direotions-
In region III, the disturbance is only coming from the negative x direction.-
Region I is bounded by the line dx = G, dt. In region i, u=20,

2
c=¢ nd ¢ = C,n
At any intersection of points in region I such as (x10t1)=
2 )
© Z o C
e =T % (1Y)
(L2)

e
2 Co: The lines of\conitant Uueod

So that u remains zero and ¢ remains
Y‘
and constant u + ¢ in this regiony a8 constructed in the Riemsnn method, are

therefore straight lines,
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In region II, the disturbancg.rr::y :'.e cah*h gexnrala

in region III, the lines of constant u + ¢ must be straight lines

since all of the lines of constant u - ¢ which they interscct bave the sane
2% . Thus at any point (xg,tg) along the
Yo <
line of slope u + 0 characterized by u + 0 = £; we have:

characteristic value, uo ¢ = o

u +G=1‘1 (hg)
2 ¢q
No O (U-Z)
Fo1
L
! 2 e
u =2 §' éic Y= 1) (hg)
R | 2 Co 2¢
o-ﬁ(fl*y‘al)gy-j{_ (L‘ﬁ)
' The line for whish u + ¢ = f;, therefore has the slope:
- 1 2¢ € -1 2 ¢
u+c:2<1‘1¢Ya%)+ LL (fi-‘-‘fh:‘%)
L7

+ 1

Y Y =-3
T fitagTD %

Sinoe this slope does not change throughout region III, it follows that the

lines of constant w + ¢ are straight lines. It is important to note that

" the lines for different values of u + o =f; have different slopes. If

two of these linaes approach or intersect each other, the pressure gradients

become large and then infinite and a shock wave occursc: The Riemann method

is no longer aéplicahle when these lines interseot.

=
1Y)
3
o
T
O
m
3
Y]
%...
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In region III, the lines characteristic of u o ¢ bhave the slope

1 2 T::”]:,- 209'
U=0¢= '§(fic ,?":'%)«s'-‘t (fi +Y - 1)

t-3 + 1
= =3 fiﬁm\(?a ‘o“o

(L)

Since these lines crosa lines having different values of f3, it follows
that the lines of characteristic u -« o may be curved in passing through

reglon III.

(d) Formetion of Shock Wavea'(Prpb]am of & Moving Wall)

The formation ¢f shock waves occurs gquite geunerally as the
rasult of any disturbance in a gas- If the disturbance is wild, it takes a
very long time for the shock wave to develop; 1if the disturbance is violent,

the shock wave forms in a short time. The Riomenn wmothod can be used to

show how they originata.

Consider a wall or piston which is set into motion at tiws
t =0 and propegatesn a disturbance in the gas in front of it. The position

of the wall at any time is given by the relation,

Xyl = 0 t<0
= W(t) t >0

For the sake of simplicity, let us restrict the motion of the piston to

subsonic velouizies. In this case only the lines of slaope u 4 ¢ can come from
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.imeé'oi‘ constant u + ¢

Figure 3 illustrates the provlemn. - The 1

’ the walla

are shown,

O ¢ dx = Cgdt
III /
L
W /’EL,%QZM/W ,”/ % t ~

Wall or Piston

Figure 3

Initially the gas ie ut rest and has a velocity u =0 as woll as a constant

velocity of sound, €= C,. We suppose that the gas satisfies the ideal=gas

As in the previous problem we can construct

®

adiabat 8o that o = °

-1
To the leoft of this line, the gas remains undisturbed-

=

the line dx = ¢, ats

On the surface of the wall u = .3."1':1 o At any point on the surface of the

2¢
wall, ue o =c ‘Y—:_% s Since the linee of constent u = o arise in the

undisturbed part of the fluid. Thus on the surface of the wall:

2 4
g = T_=T=c° +§3’€- (L49)
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tes  Te g
¢ = e + Yzl.%z R I (50)
u e = e +I_:._1-2E {s1)

Therefors, whenever %g. is positive, © » ¢, and the density of the gas
in the neighborhood of the wall is inoreased, if %g. is negative, the gas in
| the neighborhood of tﬂe wall is attenuated.

The fluid lying to the right of the line dx =¢, dt and above the
wall corresponds to the fluid in region III of the last problem. We therefore
Enow that the lines of comstant u + ¢ emanating from the wall arc straight
lines. A line starting from a point, (x', t*), where %% is positive

and small will have a slope, u 4+ C, less than the slope of a line starting

from a point, (x", t"), where gz 18 largerc These two linea must

therefore meet at some point (x*'', t¢'%), Since these two lines have
different velocities of sound, they also have different densities. So as
they approach each other a progressively sharper density gradiant developso
This zives rise to a shock vave and under such conditions the Riemann method
is no longer valid. From the above, it is clear that the less the plston
or wvall is accelerated, the smaller will be the difference in slopes of the
lines of constant u + o and the longer time it will take for tho lines
to come together to form large density gradients and shosk waves.

From Figure % and Eq. (51) it is clear that:

1> Whenever the piston is accelerating the lines of conatent u

tend to come together to form shock waves.

2. Whenever the piston is decelerating the lines of constant u
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tend to go apart and not form shock wq%ysi ¢ : E.. §.

These are specinl cases of the more general theorem that shock waves tend to be

formed {elways will be, if given sufficient time) when a gas is compressod bu®

not when it is being rarefiesd. In order to get shock waves, it is not

necessary for there to be a discontinuity of the motion of the wall.

shogk wave formod in corner
Consider the following examples illuse

trated in Figurs L.

(a) Push piston into gas suvddenly. Get

shock wave immediately at wallo

(b) Push piston into gas gredually. (ot

shock wave later.
(s) Withdrew piston suddenly from gas-

No shock wave is formed- Pressure and
density gradients gel le¢ss ateep as you

ge into gaso

L ]

o:. ,.:. .::. ..: .:o :. E
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II. SHOCK WAVES AND DISCON"INUT"r».s{«o.;e-Dr@eg.ef1 nal)
Tecture by J. von Neumanry s s o :5

(6)» HUGONIOT'S EQUATIONS FOR SHOCKS,

There are two different types of discontinuities in a fluid. In the
first kind, there is no tlow across the boundary and there is no pressure
difference on the two sides of the boundary. In this case, the boundary ia just
2 streamline separating two phases of f}uid which may be made up of different
chemical substances or the same substance but having different temperatures and
densities on the two sides of the boundary, etc. However, the kind of dis-
continuity in which we are most interested involves the flow of material ecross
a boundary in which a sharp change in pressure, deigity, and velocity take place,
These are called shock waves or detonations depending on whether the equation of
state of the material remains unchanged or whethor chemical reactions take place.

Let us postulate the existence of & plune shock wave and examina tha
6)

conditions of its propagation Pirst we must define the following quantities:

U = velocity of shock wave
Dy + U = velocity of matter before pussing through shock wave
Dy }-U = velocity of matter after passing through shock wave
Pl 92= density of fluid before and after passing throuzh shock wave

Vy 5 Vo = specific volume of fluid before and after passing through
shogk wave ‘

P1 o Pz = pressurs before and after passing throuzh shock wuve

Eq 5 By == specific internal enerzy before und after passing through
shock wave,

M = mass of mamterial per unit criss-ssctional area flowing through
the shock wave in unit ¢ime,

€¢) G.I, Taylor's article in Durand's Aerodynamiocs {Springer 1935), Vol. I1I,
page 216 has an excellent discussion of this topic.
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Shock
Wave

In order that this discontinuity can exist we must satisfy the follow-

ing egquations:

(1), eonservation of matter

Dypy = Pppp = M (82)

(2). oconservation of momentum

M(Dz - Dl) =P =Py (s3)

This agrises from Newton's equation., Consider the mass of fluid, ¥,

passing through the shock wave per unit area and unit timg as forming a particle,
Here Pl - Py is the force pushinz the particle through the shock wave and
¥(Dy - D) is the rate of.chnnge of momentum of the particle,

(3). oconservation of energy

2 (02 - y
+u(02/2 + E,) - L.(Dl/z-!-El) = Dyp, = Dyp, (54)

This equation simply states that the work which is done on the fluid

per unit are and time, i, e. Dlpl - szz, is equal to the rate of change in

its energy. Here MDa/é is the kinetic enerzy and ME is the internal energy
of the fluid passing through the shock wave., Because of the equation of =onser-
vation of momentum, we would zet nothing different if we considered the absolute

velocity of the fluid rather than its velooity relative .to the shock wave,

< ____ In
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From the eguations for comservation w? nﬁss an& ﬂor zgmgsntum, Egs.
e e ooo o0

. (62) and (63) it follows that
M o= (py - pp)/(Dy = Dy) = (py = g} Mo, = Wioy) (55)
and ]
¥ o= i’\l ={py - pa)/(l/p;, = Ypg) =1 \{= (27 = p)/(vy = V2)

2Pz (el -py) (56)

For weak shocks M = o0 where ¢ = \I‘(ép/ép) s

From the equations of conservation of matter and energy, Bgs, (52)

and {54):
22 + B, - D";‘/z -F, = Dypy/M- ap?ﬁﬂ = py/py - /A

® PV = Pelp (s7)

But by virtue of the equations for conservation of momentum and matter
2 2, _ '
(1/2)(02 - Dl) = (1/2>(D3 - Dl) (Dz + Dl) = [(Pl = pz)'/(ZM)] (Dg + Dl)

[(pi = Pz)/g] (Vpz + ipy) = (1/2) (py - pg) (Vg + V1) (58)

Thus Bq, (57) becomes
(1/2) (pl - p2) (VZ +'V1) + Ea - By = pivl = psz (59)

or rearranging

[TY XY
sevee
°
(XX XX
e o
LX)

*
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[
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®
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By = By - P1¥y = Pp¥y = (1/2)py¥y -~ (1/20py9p THEIDRNE $3/2)p,0,

= (1/2)p,¥; - (1/2)p,V, = (1/2)p)V, + (1/2)p,Vy (6)
= (1/2)(py + pp) (V3 = Vp)

And therefore

(61)

(Pl + Pz)/z = (B - Ei)/(vl - Vo)

For weak shocks p = o (J3E/3V)g and the entropy on both sides of the shock

wave becomes asymptotically equal,

(7). BEBAVIOR OF ENTROPY, INTERPRETATION, THE RAYLEIGH-TAYLOR THEORY

The oharacteristics of shook waves can be seen more clearly if we

oonsider the special casse of an ideal gas. Ia this casez)

E = pv/(f- 1) (62)
Therefore Eg{8l) becomes:
2 Vo -
PL* Py ::( 3 P2l2 - PN (63)
Or rearrangings
Vi (r-lipy = Gellpy (6¢)
vz  (elipy + G-1)p
It is convenient to let:
Po/py =£ (65)
(66)

palpr=VifTy ="

7) For an ideal gas, pV =RT, G, = €, =R, and cp/cv =7

1% follows thats E = CVT = [cv/(cp = Cvz-l pv = pv/((c. 1)
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Thus qu (64) becomsss %o 0o 00 oo

(67)

M= [(‘ﬁ 1) + (5+ 1)5,] / [(n‘+ 1) + (7= 1)Eg”§.

This equa‘cidn is oalled the Hugoniot shook adiabatic, although this is obviocusly

a misnomer becsuse entropy is changed in passing through the shock.
If the shook were weak, § would be almost unity. It is interesting

to expand Eq. (67) for 1 in powers of (§-1) ¢
q=1+ (/9 ¢- 1) - /29 (1 - 1/9) (6 - 1%+

(1/2%) (1 - 1/8)% (£-1)% = cocoo (88)

Thie series for v agrees through the term in (& - 1)2 with the corresponding
series expansion whioh we would get for the compression ratio, ¥ ., shook’ if
we allowsd the fluid to pass gradually from the region of pressure p, to

pressure pa:

Ano shock = él/f"’ 1+ (1/%) (§ - 1) - (1/2%) (1 = 1/%) (%= 1)2
+ (1/6%) (1 - 1/%) (2 = 1/%) (é PRSI _ (69)

Sincs Eq. (69) corresponds to the adiabatic with no change in entropy, it is
olear that some entropy change must take place in a shock. The fact that
Egs. (68) and (69) egree so well corresponds to the fact that very little
entropy change ‘tekes place in a mild shock,

For violent shock waves, where pz/pl =§ is large, the compression

ratio, " = p,/p; epproaches a constant value:

o) (¥4 1)/(¥-1) (70)

large

This limitinz value becomes larzer as ¥ becomes smaller, This is

seen in the following table:
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The fact that the 6ompreséion ratio camnot excsed & fixed value in passing through

a shock, is quite contrary to the behavior of fluld which pass through the same

pressure drop without passing through shocks,
8)

The entropy of an ideel gas oan be written in the form

' Z.
S=0, log (pV) + s (71)

Therefore the change in entropy in passing through the shock wave can be written:

+

~
As=S, -8 =C, L}og(pzvg) - log (plva}

=¥C_ log (gl/”v“l) (72)

The ohenge of entropy is always positive if the fluid flows from a region of
low density into a region of higher dsnsity, i.e. ﬁ is greater than unity, For
this case g is also greater than unity and the fluid flows from a region of low

pressure to a region of greater pressure, For weak shocks, the change in entropy

is very small as we can see by expanding Eq. (72) with the help of Egs. (68)
and {69). |
A s=¥c, log [1 +(1/12%) (1 - 1/4%) (§-1)% + ]
* 3 P
= (c,/12) (1 - 1/8°) (§ - 1)° + ... (73)

This entropy chanze is negligible unless g > 2,

8) P.S. Epstein, "Thermodynamios" {John Wiley, 1937), p. 63, Eg. 4.19
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The problem of shock waves was most conqu;go t, 5h~ kdkly workers

in this field because of the undertainty as to whether entropy should be con-

gsorved in the shock.

and we are not greatly concerned over the fact that the entropy shanges.

We now know that it is energy which must be conserved,

Eow-

over it is slways mnecessary for the fluid to flow through the shock wave in such

a direction as to inorease entropy.

This means that in flowing through a shock

wave, MATTER FLOWS FROM A REGION OF LOV DENSITY TO A REGION OF HIGHER DENSITY.

NO SHOCK WAVES ARE POSSIBLE WHEN MATTER FLONS FROM A DENSE TO A LESS DENSE

REGION, since this would cause & decrease in entropy. After passing through a

shook wave, the fluid becomes hotter than it would if it had arrived at the

same pressure without passing through a discontinuity.

Shoocks are connected with the nonlinear ocharacter of the hydrodynamical

aguations.

In simple physical terms, they may be ettributed to the fact that the

velocity of sound is not a constant, but increases with the pressure. Suppose

we produce a pressure wave moving in the X directlon.

p
x >
p f’__‘~_’—’////’zz//,__—
x>
p‘___ﬂ
x 2>
FIGURE 5
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t= 1
t =2

This situation is shown

in Pig. 5. The regions of high pressure

at the top of the wave travel with a
velooeity greater than the velooity in the
pressure troughs. The front of the wave
gradually gets steeper and the back of

the wave gots less stesp, After sufficient
time, the wave front gets infinitely steep

and s true mathematicel discontimuity is

present,

E
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Shook waves were discovered in 1860 6;{ F:i.e:z!xnn ’d&ay’v@re redis-
sovared in 1890 by Hugoniot and forgotten again, Finall;.;;.lgao Lord
Rayleigh and G.I. Taylor started the investigation which has led to our present
treatment of the subject. They were very much conceraned over the appearance of
a mathematical discontinuity in the fluid motion. They made e careful study of
the oonditions in the fluid in the neighborhood of the shock wave, When they
ro longer negleoted heat conduction and viscosity, thoy obtained a finite width
for the shock -wave in which the pressure and donsit; of ﬁhe fluid changes very
rapidly but not discontinuously, & mild shook wave, such as in front of the
nose of a bullet, has a width of the order of 10°4 om. For a violent shook, the

width is much less.

(8)., COLLISIONS BETWEEN GAS MASSES

One of the best examples of one-dimensional shocks is the oollisiog
between two gas masses. If the two gases are initially et the same pressure,
at the time of impaot there will be formed two shocks waves, one in each gas.
If the initial pressures ars unequal, there is the possibility of the shock wave
in the high-pressure gas being replaced by a rerefaction, After the collision,
the pressure and the velocity of tho gases at the interfaocs must be contimious,
Howover, the density of the gases need not be the same on the two sides of the
interface.

In case tho initial pressures in the two gases are different, there
is a oritical ratio of initial pressures, If the difference in initial pressures
is smaller than the coritical value, there wil; stlll be two shock waves as in
the case of equal initial pressures. Howev9r, 1f the difference in initial
pressures is larger than the oritical value, the shock wave in the high-pressure

g&88 1is replaced by a raref‘aof.ion° The high pressure gzas expands at constant

entropy and the Riemann method can be used to detcrnwhe 1&§°eundit10ns of flow,
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The shock-wave method given here can be used 8. de%ar};ﬂ nes the &3ﬁd1tlons in

the low-pressure gas. The problem is completely determinod by the requircment;
thet the veloocity and pressure must be equal on both sides of the imterface,
This type of problem can be solved but it is usually impossible to obtain any
analytical solution.

Let us consider the simpler problem of the two gases having the same
initial pressure. It is couvenient to specialize stil} further and let both
gases be ideal and have the same value of & . However, the gases may have
different chemical compositions and densities, We suppose that befors tho
collision, the pressure, veloocity, and density is uniform in each of the two
_gases, The gas masses extend infinitely far in the plus and minus X directions
respectively so as to avoid difficulties arising from end effects. To realize
this experimentally it would be necessary to have the gases enclosed in long
tubes with thin membranes at each end. These tubes would be thrown together and

at the instant of impact the membranes would be removed. The mathematiocal treat.-

ment is muoh simpler,

Figo 6 illustrates the con-

{Shock wave),
ditions, The problem is to find the

veloolty of the shock waves, the

(dx = u'dt)

INTERFACE velocity of the interface, and the

pressure at the interface.

ot

(Shock wave)y

LX) .:. :oo o:. 5:. 50:
A R R
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Let us designate conditions in gas A by the aubegari.pw, \;o ulnlis‘nallyo
the pressure, velocity, and density in jgas A are p, uy,, and py, respoctively.
The velooity of the shock wave is U,. We can use the equstions which wo derived

to consider the conditions on the two sides of the shook wave:

Dig = U39 = Ty (74)
Doa = Ugg = Vg (75)
£a = P2a/P (76)
Ya = Pga/Pla (77)

But from Egs. (52) and (56):9)

= ::-.‘pla Pggq ~ P .,,AP ‘ g‘°1
DZ&. Me./PZa ‘l ( = \ = ——— J'——- — (78)

P2a Pea ~ pla.) Y Pla y’a(pa - 1)

D1g = (929./919.) Dyy = 74 Dpy (79)
So that
. 7
U, =u, +7 ({p/e —_— (80)
o Te NTE 0y 0, - 1) _ |

Y25 = Ma +\£p/91a d(l/zi) (7, - V) (£-1) (81)

And from qu (67)

[(‘O’u 1) + (¥+ l)_@] /E(+ 1) + (€ - 1)51 (82)

Similarly if we deaign&te conditions in gas B by the subsoript bs

9) Notice the use of the minus sign in the following equation. The necessity
Tor it is clear from Fig. 6 since the material im crossing the shook wave,
continues to travel 4in the negative x direotion. . e . °u

. e [ 3
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Doy =\ BE, - 1/eyy 740y - 1) e el
U= ugy -4 \}p/plb J(fb - 7,07 - 1) (84)

Uy = uy =\(Bleyy) (/3) (] - 1) (E, -1 (88)

{(F-1) + (¥ + 1)5, (86)
(¥+1) + (¥ - 1),

Now wa require that the material on both sides of the interface has
the velooity u' and the pressure p', The velooity of the interface is then
also u', We shall try to satisfy the equations with the pressure p' and the

velocity u' for all of the material of both gases after the passage of ths

shock waves, Thuss

n' = upg = Vpy (&7)
P' = Py = Py
= pf, = p§, (88)

Wo must then solve the four equetions: (82), (86), (87), (88), for the four

wnknowne £, %ge Gps Ty o From Bqo (88) it is clear that
£= 5, =§ | (89)
Substituting this value of £ into Egs. (82) and £86);

('{m l) <+ ('0"3‘ 1)§ (90)
(7+ 1) + (¥-1)%

7=7a =7'l:)=
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Aﬁd Bq(87) becomes: o, 3 e 3 % 8
W ¥ \Iy/ola \1(1/7) (1-15=12) = uy
- (Gl N7 (- D (8- D) (91)

Rearranging %Eq. (91) and squaring both sides of the eguation:
' 2
B1p = Wy
(92)

\IP/Pla + JP/P],b

(1-1/7(6-1)=

Or making use of Eg, (90) and letting

B = Y = Uie '2 (93)
Jo/p1q + Jp/plb
2(§-1)% = s&nn + (€4 1)2]: (o4)

But Eq. {94) is a simple quedratic equation for £ heving the solution:

= 14(8/a) (v+1) ¥ (Br+ (B316) (¥4 1) (95)

Since B is always positive, both of the roots of Eq. (95) are real
and the;ef’ore might correspond to solutions of the hydrod:?mamical equations.
However, if we took the negative sign for the squars root, £ would be less than -
unity and the entropy would decrease when the material passed through the shook
waves. This is obviously impossible so we must' use the positive sign., All of

the properties of the collision process are then completely determined.
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III, TWO-DIMENSIONAL HYDRODYNAMIGS ege see ooo see oo

Lectures by von Neumann and Peiefls °.
and Report by Fuchs

(9). STATIONARY TWO.AND THREE-DIMENSIONAL FLOWNS., AVORTICITY, BERNOULLI's

EQUATION,

The problem of two-and three-dimensional flows are considerably more .
diffioult than the correspondinz one-dimensional ones. Two~ and thres-
dimensional problems must be treated by special methods which are applicable
bnly to a limited olass of probliamso

In veotor notgtion, the equation of motion is

du/at + u . Vu =~ (1/p)Vp (96)
and the equation of contimuity is

dp/dt = -V.o(pg_) - (97)

Here u is the velocity.

Flow problems naturally divide themselves into two classes: those
involving vortices and those which are irrotational, Only e limited number
of voftex problems can be solved and we will mot .conaider them here, Whenever
e fluid has a vortex, its angular velooity:, ¢, is different from zero in some
region. Since & = (}./z)Vx us the requirement that there be no vortices is
equivalent to requiring the curl of the velocity to be zero. But any vector
whose ourl is zero is the gredient of a scalar, .‘I‘heref‘ore we can set

uo=-¥ § IRROTATIONAL FLOW (98)

Here (5. is ocalled the velocity potential.
If a flow is initially vortex-free it will remain vortex-free if

the pressure is a function of the density alone. Therefore there will be no

L 9 ¢ve :0
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vortisity generated as long as the flow remains 1sen%r§;pi:q°= No&pc&;aféﬁt

shocks will change entropy in a nonuniform manner and vortices can be formed.
A plane shock is essentially & problem in one-dimensional flows and does not
produce vortices, However, Hadamard showed that aﬁy shocks except those
having either plane or spheriocal symmetry produce vortices, For example,
vortices are formed when two plane shocks collide at an angle.

The three scular equations corresponding to the vector equation of
motion can be reduced to one eguation when we make use of the velocity peoten-

K 4

tial for irrotational flows. Eq. (96) becomes:
- (3/3t) (V) + V(u-p /2) = - (1/p)Vp (99)

or inverting the order of differentimtion for the first terms
~w(af/3t) 4L'i;’(:sz"mi P22 =- (1/p)vp (200)
This is equivelent to the egquation
-a(af/at) + a(graa §)°/z + (1/p)ap = 0 (101)
And intezrating along any path
dp/p == /ot - (1/2) (gred §)2 + (1/2)W (zo2)

Here 11 1s the constant of intezgration., For a steady statef bﬁ/Bt = 0 and we

zet Bernoulli’s theorem:

al

{ap/o + (1/2) (graa ) = (1/2)W (103)
Here }} is & constent which can be determined by knowing .the velocity
and pressure at some point in the fluid, Usuallyl{ is evaluated from the

pressure at a stagnation point where the fluid veloeity is zero.

00 o000 o0 oos o R
APPROVED FOR PUBLI C RELEAéE. See %.° ¢ ..



APPROVED FOR PUBLI C RELEASE

o0 .:. :..'.:. :.. :..
P
- 38 - * .. * :. :.. :.

For an ideal zes, we can evaluate S\dp/p and obtain an upper limit

to the velocity of the flow:

p = k(s )" (104)

J‘dp/p = [)’k(so)l/x/(fal}] o = 1)y o [xk(so)/(f= 1)] o=l (108)

But the velosity of sound, o, is given by

o= [Gofoery, = (Y5l ] (106)

faeto = o2/(€ - 1) | (107)

So that:

And Bernmoulli's eguation becomes:

(Velooity)? = (grad @)3 = [z/(x.p 1)] [0‘3 - 02] (108)

Hore ¢, 1s the velocity of sound at a point where the flow veloslty is gero.
N .

The equation of contimuity is also important, If we introduce the

»

velocity potential into Eq. (97): : '
3p/0t =V <(p V §) - pV'OVf +Vp vf | (108)

For a steady state; ap/ot = O and
v . v sV -&np‘eV§ = 0 (110)

Sometimes, the velocity potential may be determined in the following
menner, The density is eliminated from Eq. (110) by making use of the implicit

dependency of Idp/p on density in Eq.(103)., This leads to a single differ-

ential egquation involving § alone, The equatibﬁ ig. wégry 530 pliuated and
. o 3 e o o ‘
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nonlinear. When the effect of compressibility is smed® $ip3gt vo use
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this equation to obtain good approximations for the ﬂflooity potential,

(10) STATIONARY TWO-DIKENSIONAL PLONS:; NOZZLE FLOWS. ’

The steady-state flow through a nozzle provides one of the simplest
exemples of the use of the Bernoulli theorem. Consider a well-tapered (Laval)
nozalelo) attached to a large chamber with a large cross-sectional area. Sup-
pose that the zas in the chamber is at rest, then the velocity, u, of the gas

at any point is given by the Bernoulli equation {108):

w2 = [z/(fol)] [ci - cz] (108)
But  oF =F K(8,)p° 2 (106)
rmd p, = k(So)pZ (104)
So that
-1)/% ,
2 = (/o) (2 /o) M7
Fig, 7 .
Therefore Eq. (108) becomes:
w? = [26/(»’-:1)] (po/po) [1 - (p/if)“ml)./i] (112)

However the rate of mi3ss filow through any cross seotion S of the nozzle, M,

must be thé same at any point in the noszzle. Thus:

M = Spl = constant (113)

So combining Eq., {112) for the velooity with Eq. (104) for the adiabat:

- 300 0o J[ar/ (1) 2o/ \Jl - (p/p) /T (1)

34

10) Omne of the best references for nozzle flows is Stadola and Loﬁenstein,
"Steam and Gas Turbines" (McGraw-Hill, 1927) Vol. I,

:O. .00 o o :oo : L »
APPROVED FOR PUBLI C RELEASE *** = ¢ "% "o



APPROVED FOR PUBLI C RELEASE

\
[ ]

or rearranging: N ‘ — . :
s =/ BT pope |00 [1 i <p/p°>“‘.'°”/‘]‘l/2

This equation gives the cross-sectionsal area ss a funoliou of the expansion

ratio, -
: ! The conditions at the throat are
S ‘
'; g particularly interesting. Here the
thr&a
: oross-seotional areaas a funcetion of
p/p, passes through a minimum. In
1 03 "order to find the conditions st the
sl 1
Figure 8 minumum, let ¥=(p/po)7 .
Then
' ‘ -1/2
S = (constant) [yz -y '*1] (116)
At the throat {use subsoript ¢t to designate throat):
ds -@/@)(cousfeﬂt) 5]
— x 4 : 2y, = (F+ 1) (117)
[-t < Vg ]
Therefore:
1/(»-1) 1/%
v, = /) = (p./p,) (118)
Henoes )
¥/(:-1
P/Py = [z/(f+1)] /(:+1) (119)

Substituting this ratio into Eq. (108), the veloscity at the throat is given

by the relation:

e o
L 4 * [ e o : *
¢ & o e o e o
b s oo e o0 o o
d S o s o oo
00 000 000 000 000 oo
L}
oQ oe 00 o o
e o 0 e o o o o -.o
S ® o [ 3 s0e .
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The density at the throat is given by the adiabat:

1/(5-1)
Pt/ = [2/(5+1)I / (121)

Using the perfect-gas eyuation, the temperature at the throat is givem by:
= .4
T 1:/1:0 2/(¥+1) (122)

And of course

B = Sypguy = Syp,  [2/ (r+1)]

1/(¥-1) ‘/[26/(3.*1)] T (126)

The above equations apply until the gas has overexpanded so that
the pressure in the nozzle is less than the external pressure. Under these
conditions, plane shock waves may be expeoted {see Frank J, Malina, J. Franklin
Inst, 230, 433 (1940)).

If the nozzle has too large an angle of taper (usually over 30°),
the gases do not completely fill the nozzle and therefore do not expand as
rapidly as might otherwise te expected.

If the nozzle is not taupered sufficiently in the neighborhood of the
throat, the effect of the turbulent boundary layer becoines important. Von Karman
has shown both theoretically and experimentally that under such conditions the
boundary layer varies periodioally alonmg the nozzle and gzives effectively a
succession of constriotions, and the gas suflers a series of plane shocks in

passing through this region.
| The problem of gas flow through a straight tube is exceedingly compli-
cated. In this problem the flow is determined by the friction due to turbulence
in the boundary layer along the surface. In passing through the tube, the gas

periodically overexpands, suffers a shock wave, and expands agein. (see W,

”" M
Frossel, N.A.C.A. Technical Memorandum No. 844). °
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(11), STATIONARY TAO-DIMENSIONAL FLOWS: CORNER FLOWS. °OB OIS e 0

HEADWAVES OF WEDGES. INTERPRETATION. FPITOT TUBE,

Usually when a two-dimensional flow traveling with supersonio
velocity collides obliguely with an obstacle, it forms an oblique shoock wave.
This is evident in the photographs of bullets im flight (G.I, Taylor has an

excellent article on this subject in Durand's Aerodynamicsg Vol, III, p 236),

The shock wave 18 a plane discontinuity with the mamterial flowing through it
obliquely. In discussing the flow, it is convenient to oconsider the shock wave
as fixed and the gas moving obliquely throdgh it. By superi.mposing on the
whole system a velocity parallel to the shock wave, the problem can be reduced
to the one-dimensional flow through a {ixed shook wave, This type of shock
wave cennot occur when everything is contimuous. For exsmple, these shock
waves are formed on the‘sharp point of the bullet nose,

Figure 9 illustrutes the problem of the

oblique shock, The fluid hits the oblique shock

Py at the angle o and departs with the angle 4.,

11)

We assume that the pressure is only a function of
/33 x 2 X, This has as a result that v , the component

L%
/// of velucity in ths [ directions is constant. As
o . :
A t . usual» we consider only the problem of the steady
y

state, In this case, Bernoulli's theorem is valid

Figure 9 for the flows both before and after the oblique

.

shock, If we let u be the component of velocity
in the x direction, w be the total velocity and

reserve the subscripts 1 and 2 for the flow before and after the shock waves

11) The equation of motion for v is dv/dt +u dv/dx = 0. But for & steady
state, bv/Bt = 0 so that dm/&x = 0 and v is a.c?n§%ehto°:°:":°
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oo OGoeo XL Lo oh Ak =.o
\11 = wl cosa uz = wz co:s.{g :' .E. o::o :z:o .E.E
[ (124)
vy = Wl sina vy = W, sin A3
But '
vy = va . (125)
And from the congervation of matter,
M= pyu; = pyu, (126)
So that . .
tan/g = vz/u2 = (vl/ul) pz/p1 = (pz/pl) tana = Ytana (127)

The rest of the solution proceeds much as in the case of the plane shocks.

=pm o= JEPz - /oy = 91)] P1P2 (128)

So that

® uy = (py/e,) [(pz - py)/ (e, - pl)] = (py/py) E;(g - DA7- 1)] (129)
But eccording to the perfect gas adiabat
o® = (3p/op)s_ = ¥u/p (130)
“And therefore (making use of Bq. (124)):
/% = (9/%) (§ - 1)/(9 - 1) = (W/cE) cos®a  (131)
Just as in the oase of the normal plane shock,
] = [(:T— 1)+(*+1)§]/[(U+ 1) + (¥ - 1)%] ' (132)

Or solving Eq. (132) for £

ST % T I T I
ae 0:00’10'330"’ ."\5':o. .
APPROVED FOR PUBLI C REpEASE'-* LU




APPROVED FOR PUBLI C RELEASE

§= [r+n)-(s- 1)}/ [(r+ 1;=~,(‘,.Q Bl (133)

o
ee o0 00O

Substituting this expression for § into Eq, (131)
. 2 2 =
(W /e))" cos’a = 27 [(¥+1) - (¥-1)7 (134)

And solving this equation for )

(¥+ 1) (’Nl/cl)z cosZa (135)

2 +(¥-1) (wl/c'l)z cosza.

As in the case of the normal plane shock;s, the fluid must flow
across the shock in such a direction that P, is greater than p, 3 alsos the
increase in density remains finite no matter how strong the shock, For a very
strong shook, %= (¥# 1)/(¥ - 1), Thus making use of Eq, (127) and ¥= 1.4,

we find the following angles of deflection for a strong shock in air:

a B /8=a
0° Q¢ o°
15 58 43
) 30 T 44
45 80 39
60 84 24
79 87 i2
90 0 0

It is clear from the above table that the deflection, ,B3- e¢» can-
not exceed some maximum value. If the daflection is greater than this, the
disturbance cannot produce & stationary shocks ¥We can find this maximum sngle
of deflection for a given value of the initial veloecity, W, » and initial
velocity of sound, 8, , in the followiny manner:

differentiatin; toth sides of Eq. (127) with respect to a

D

N [ ] o0 o000 oo
- e o [ 4 [ 4 [ 4 (4 e o
[ ] [ d L] [ ] [ ] o o
L] [ e [ ] (4.4 e o
[ ] [ e ® [ ] e o
o0 660 000 000 000 O
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seczﬁ d4/da = tan o« d7/da + ‘7..;.9 3 o ::‘ (%3?
Subtracting 8902/3 from both sides of this eguation
sec’s d{f= a)fda = tan a dPda + 7 sec’a « 80028 (137)

But the condition that /4 - a should be & maxirum or minimum is for

d(B - a)/da = 0, XNaking use once more of Eg, {127) to eliminate 8, the con-

dition for 4 - a being a maximum becomes:;
0=tan a d%da + Vsec®a - 1 -jtana (138)
And differentiating 7 in Eq. (135) with respect to a keeping %y and oy constant:

d7/da = tan a En 2y + 272 (Yal)/(a'ﬂ)] (139)

Substituting Eg. (139) into Eq. (138) and solving for tanza s the condition

for the maximum deflection becomes;
'\

T} ..1

e = seprr

banTor == ony(5 w3)/(g + 1) 77 (140)
Thus for air with ¥ = 1.4, we got the following conditions for maximum de-
Tlection:

1 0 1 0

P> 0273 3,18 15%40¢0

3 2222 6,11 29°30°

4 201 12,05 37950

5 .184 29,6 41°50¢

6 0167 46°

[ : 0. : :. :.. E.O
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For air, % = 6 is the greatest compression whith &an;'be obdainged with the
e o O

strongest shocks.

The above treotment wés first made by Prandtl and Mayer. This
analysis may be applied directly to the problem of gases flowing past &n infinite
wedge, After the shock, the gas moves parallel to the surface of the wedge,
Therefore the deflection, A} - a » is equal to the half angle of the wedge, 9 o
This is shown in Fizure 10,

On a photograph, such as of a bullet in

flizht, the ungle,» /2 - a, that the shock

makes with the wedge is clearly visible,

Knowing both /3 - a and a. we can get the

compression ratio. ¥ ., from Eq., (127) and

then the pressure increase, § . from Eq. (133).

Knowing the incident pressure and density.

we get o, from Eq. {130). Thus we oan obtain

the velocity, wy,of the gas with respect to

Figure 10 _ the wedge from Eq., (134). This then com-

prises a complete solution,

If the wedge is infinlite in extent: the oblique shock waves remain
attached to the point of the wedze until the maximum value of 4 - a is reached.
However, von Neuwann has shown that if the wedse is finite, the shock waves
detach themselves from the point of the wedze when wz/c2 = 1 . This condition
is reached for wedges with half anzles one or iwo degrees less than the maxi-
mum value of A - a . Figure 1l shows this situation. Here the solution is
gtationary and the heudwave remasins a finite distance in front of the wedge,
‘the smaller is the breadth of the wedge, the farther the headwave remains away

from the wedge. ¥e can find the angle for which Wp = 0, in the following manner,
[ 4

. ®
. ¢ o

[
[ X

3
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Making usevct 2gst (124 3s¢(%€5), and (126):

Wy =up + vz = (py/ep)" vy + vy
” 2 (141)
= (1/72 + tanza) W] cos a
—— But from Bg. (130),
o = o2 (eB%) pi/ed = o2 P (142)
2 = %1 ‘Fa/Pys PY/P T €

So that using Eq. (134) and (133)
2,2 2 2 2 2,2 2
Wz/oz = [ﬁl + 7 tan a)/f_] (W) /o1)cos @ {143)

Figure 11. = (1 + v)zmnza)zv [(‘/é'l) - ((:»1)’7]

[rtrs) - 1] :

Therefore the condition that Wz = cz becomas:
(- 1)% - 27 (r+1) + 7242 + 2¥v . 1)
tan%q = _ (144)
217~ [(f+ 1) - (¥ = 1)*)]

If the velocity past the shock wave, W, s is less than the velocity '
of sound in this region, Cy s the disturbance at the far corners of the wedge
travels back towards the point of the wedge and affects the shock wave, causing
the detachment. For a finite wedge, the situation indicated in Figure 11 holds
for angles larger than the critical angles, For an infinite wedge having a
half angle greater than the meximum 8- a , the head wave becomes detached and
travels back through the fluid. This gives rise to a noastationary solution.

The problem of headwaves for coni¢al wedges (projectiles) has been

treated by Taylor and Maccoll, etc. The phenomena are similar to those for

. e e e e 0
00 P04 09° coe csos %o
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wodges but the analysis is consideruably more di:fi.’ioggl;{ beézt%,:q §l.'z:a conditions
of pressure, density, and velncity downstream can no longer be constant and
satisfy the equation of continuity,

Pitot tubes are designed to measure the velocity of a gas flow in
terms of pressure, Effectively they form a wedge with « and /3 equal to zero.
A tube extends from the gus stream 4o the pressure gage. The tube ?s constructed
so that the gas velocity at.the pressure gage is effectively zero, The con~
ditions at the pressure gaze (which we shall designate by the subscript 5) are
related to the conditions just in back of the shock wave by the Bernoulli

equation:

(1/2) 3 = [g/(s-1] (py/py) [1 - (pa/p,o.)("'l)/ ’J (145)

But the conditions at the points 2 and 3 satisfy the same adiabat so that

oy = (ps/pz)l/ gpz : (146)

Substituting this into Eq, (145) and rearranzing:
(4-1)/% [ 2 '
=1+ [(¥-1)/2%
(p,/2,) (¥-1)/ I ue,/p, (147)
But according to Egs. (126 and (129):

o = wBey/oy )% = (pyoy/e?) [1(6-10/07-1)] = (oy/p,) (6=13/(71)
(148)

So that Eq, (147 ) bocomess

(¥-1)/5

(pg/pp) =1+ [1)/27] (6o1)/60-1) (149)
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And substituting tine exprescion for 7 from Eqs (2523 an& "oar:bmgzngs

(pg/p, )%= g2/t + [(Fory/ev] /s (50)
After multiplying both sldes of the equation by

¢ (¥-1)/% _ (pz/pl)(nl)/x

and taking the ¥/(#-1) root of both sides of the equation:
T/ (V-1
PP, = §[(vr+1)z/4x + (¥%-1/2%) 1/§J /0-1) (181)
Where § is obtained from Egs. (133) and {135) after setting a = 0 :

§= [egom)] /o)) - (-1)/r1) (152)

. \
Thus the ritot tube measurement of Pz determines the gas velocity, w; , if

the initial pressure and density of the gas are known,

(12) STATIONARY TWO-DIMENSIONAL FLOWS: FLOW AROUND CONVEX GCORNER(RAREFACTION)

The supersonic flow of & gas arocund a convex corner leads to a
rave faotion instead of a shook, Figure 12 shows the flow. The gas maintains
constant pressure, density and velocity until it reaches the line 00° where
the disturbance from the corner first reaches it, The streamlines turn almost
radially about one.cqrner and then become parallel to the new surface.

Originally the pressura,

density, and the velocity are

9“1991
uniform and they become uni-
form again after passing
through the rarefaction,
Pigure 12
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It is oonvenient to use polar coordinates wit}.;.z;hé.cgrnei.eiq.oh;ter for this
truotment and we shall let u be the component of veloclty perpendicular to
the radius vector and v De the veloocity in the direction of increasing
radiuvs vesctor,

The line 00' is at an angle, 8, =7/2 - @ , where ¥ is the

¥ach angle,
sin ¢ = °l/“1

The meaning of the Mach angle is olear from Pigure 13, The rarefaction dis-

turbance at O travels with the velooity ¢y » it is swept downstream with

the velocity of the fluid, Uy » Therefore, the farthest upstream it can reach

is along the line QO°*,

Figure 13

In rectanguler ccordinates, the equations of motion and the

squation of continuity for a stationary flow may be written:

uy du, /& + uy du,/dy = - (1/p) 3p/dx (153)
u 6u¥/6x + uy buy/éy = - (1/p) 3p/3y (154)
Bugp)/ox + Buge)foy = O - (188)

Here we have let u, and uy be the velocity in the =x and y directions

respectively, In order to express these equations in polar coordinates, it

is necessary to set:
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u, =ucos & *vsiné 0:: .::. :::. .T':. :E:. .:.3)
u, = -u §in 8 + v cos © T ".(157)
3/8x = sin @ d/or + (1/r)cos © 3/06 (158)
3/dy = cos & dfdr - (1/r)sin® o/08 (159)
From these relations, we obtain:
w wfar + (v/r) Wwfee - ve/r = - (1/p) dp/or (160)
u ov/er + (v/r) dv/ae +uv/r = - (1/pr) dp/oe (161)
dpur)/or + IHpv)/3® =0 (162)

These equations may be greatly simplified by the assumption that
the velocity, pressure, and density in the rare.faction region are functions
of @ but independent or r . The only necessary justification for this
assumption is that we cen satisfy all of the eguations and obtain a formal
solution of this type. The equation of motion and the equation of continuity

then become:

(v/e) du/oe -vife = (160)

(v/r) odv/ee + uv/r = . (1/pr) ap/ae (161')

pu + 3(pv)/ee =0 (1621)
Furthermorae:

dp/08 = (dp/3p) dp/d¢ = o Jp/20 | (163)

The Eqs. (160'), (161'), and (162') therefore reduce to:

°

' L4 ® . (X ] ° e
[ * ® e

o0 000 o000 000 oo o0
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2u/%0 = v i b1 Gde

[T 1]

v E@w/ae +'d] = . (oz/b) ab/be (181'Y)
v Ez + av/oéj =« (v%/p) opfo0 (162°)

In order for Egqs. (161't) and (162'') to be compatible, v = ~ & or dp/a6 = 0
or 3v/36 +u =0, If dv/86 + u =0 , according to Eq, (161') it would

follow that dp/d0 = O and the pressure would everywhere be the same, Similarly
if bp/b@ = 0 ;, the density is sverywhere the same, Neither of these casec .

could be generally applicable, Therefore we conclude that

v=.o=-ffpfo = -‘n:(so) o(¥-1)/2 (164)

From this it follows that
(/o) odp/de = [2/(1(-.1)] (1/5) dv/20 (165)
And Eq, (162") becomes:
u + ov/ee = . [z/(-s-l)_] ov/36 (166)

Teking the derivative of both sides of this equation with respect to © and

making use of Eq., (160"):
[_({+1)/(1.1)] a%v/a0% = - ufds = - v (167)

The solution to this equation is

- A J(¥-1)/(t+1) ein ,,(Y-l)/(a"ﬂ) (e +8)
u=+A ocos ,I(f-l)/(rﬂ) (e +8)

flere A and 6 are constants of integretion to be determined in the following

<
]

(168)

L]
[ [ d [ ] [ ] e o
00 900 o000 000 o000 O
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manner, According to Bernoulli's equation (108), t!\c- square o the 'vélocity

is given by:
w? + v2 = [_;./(*{-1)] [of; - 02] (169)

In the original flow, the constant ¢, is determined by the relation:

= [2/(x-1)] [cg - oﬂ (170)
or"

[2/(’6-1)] oi =u:2L + [2/(2f-=1)] c? (171)
And since ¥ = -0 , Eq. (169) becomes
ué + [(f+1)/({.»1)} vZ = 20&/(5-1) (172)

Substituting u and v from Eq. (168), we get

='Zc§/(b‘-1) -"—u% + 20%/(":»1) (173)-
To evaluate & , we set v = -c; when 8 = 8
o) = + \'[(-(..1)/({+1)] [ + 20/0-1)] st GO/ (8, +8)
(174)

The change of the pressure with angle may be determinsd in the

following manner, From the adieabat and v = - ¢ we obtain:

v = @ = c% (p/pl)(x-l)/{ (176)

So that

V/(v)g-_-_go = - v/o; = (P/Pl)(“al)/zfa

[sin J(z’-l)/(a’*-l) (e + 6)] /sin J&E-1)/(%+1) (e, + 8) (176)
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For very high velocities or sharp angles,*}hq f3uid?fisw odonot
follow the contour of the corner and the flow forms a free surface. Ths slope

of the velocity must change gradually, This slope is given by the expressic::

u -1 sin 8 + v cos ©
y =

) u nueoos O+ vsin ©

(177)

- sin © cos {(sel)/xx+1) (o + a)-l(«zl)/Tf+1) cos © sin J(f-l)/Kr+1) (0 +6)
+ cos © cos j(x;l)/(x+1) (@ + 6)-{(5-1)/(x+1) sin © cos J(f-l)/(r+1) (e +6"

If the corner goes from a surface which initially has the slope zero to a

surface whose slope is dy/hx = o m , then ® ohanges from @, to the value given
by Bq. (177) if uy/hx is set equal to -m , After this point, the pressure,

velocity, and density remains constent,

| =,

m...

APPROVED FOR PUBLI C RELEAS




APPROVED FOR PUBLI C RELEASE

Ay .
v L)
0 000 000 000 000 oo
L J [ ) [ e * [ )
L J L d o [ oo [

(13) . RLFLECTION OF SHOCK GAVES FROM A RIGID WALL. S ° ° ° * °°

8

The reflection of shock waves from & rigid wall and the .
collision between shock waves are important phenomensa which lend themselves
to direct experimental observations. For example the reflection of shock
waves from a rigid wall is often used to measure the velocity or pressure of

shock waveso Figure 1l shows such an experimental setup. The angle of

the reflected shock vave tells

&—blast the velocity of the blast wave

. wave
2. E if the pressure behind the blast
o Iin

O is knovm or the pressure if the
reflected shock

velocity is known. As the blast
progresses 1t travels across the
plate. The phenomenon is there-
forenot stationary with respect
Figure 1l

to space, but it may be statior-

ary with respect to e cocordinate system traveling with the blast wave.

Blast
Reflected Wave
Shock Wave

4

Suppose that the blast is sufficiently far away from the

plate so that blast wave presents an essentially plane front. It strikes
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the plate ot an angle /2 ~ go If the blast is travtling at a x;elo.c,i?ty, U,
the blast wave will travel along the plate with a velocity U/sin g In the
so-ordinate system fixed with respect to the blast wave, the material in

the undisturbed region, I, has the velocity « u/ain € éarallel to the
surface, and of course the initial pressure and deasity, Py and Py° The
fluid is deflected along straight lines townrds the surface in region II.

A reflected shock wave rectifies the flow and makes the fluid motion in
region III once more parallel to the surface. Let us designate the resulte
of passing through the original blest wave by unprimed letters and the
results of passing through the reflected wave by primed letters; also, we
use the subscripts 1, 2, and ® to designate conditions in thlr;hree region;n
Let us suppose that we know U, Pys and Py Then the condit%ons in region II
are completely determined. Setting w = 0/sin g, Eqs. (133) and (125)

tell the pressure and density in region II. Eg. (127) tells the angle y-E
Eq. (14%) gives the velocity of the fluid in region II. To get from

region 1I to region III the angle of the reoflected shock wave must be

adjusted so that:

B'-a’= foa (178)

Here /8 and q are already known and /9" and q° are connected by the

relation:

ten /?9 = ' tan q° (179)

|

L] (4 ® N e [ d
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Y 20 0600 000 000 de0 00
" e /e
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and
, (v + 1)(W2/62)2 cos? g’
hoE 2+ -1 32)2 co8%q? (180)
where
e 2 ) ,
mY Qs nPanf 2nfir 4 1) - fr = Dl
3;) o +1) - 66 =1]° (=)

As long as the shock is weak so that N is almost unity
or 28 long a8 q 18 small, it is possible to find a value of ° which
satisfies the requirement of Eq. {(178). In the case of weak shocks, the
reflected wave comes off at the acoustical angle, f5° = qo However, for
larger angles or stronger shooks there is no solution of this nature and
the problem is much more complicated.

For angles larger than the critical we have the picture showm
in Figure 16, Next to the surface we have a Mach wave perpendicular to the

surface and extending out a distance corresponding to a disturbance traveling

+

with the Mach angle from the cormer of the plate. This distance therefore
increnses with time as the blast passes aé¢ross the surface. Joined to the
Mach wave is the original blast wave and the reflected wave. Behind the re-
flected shock wave is a smell region of compréssiong The fluid which passes
through the Mach wave has a higher temperature and s different density from
the material which has passed through the two shock waves and therefore there

is a slip stream separating the two gases (with no pressure gradiant across

the slipstream). .

* This is accurately the idach angle only in a simple three-shock theory,
and is observed to differ from it considerably.

o : 3 IR
00 000 060 000 00 00
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Reflected
Shock Fave

Compression
Blast Wave

Slipstrean

Mach Angle

Figure 16

(1L) TWO-DI.ENSIONAL STATIONARY PROBLEMS -~ METHOD OF CHARACTLRISTICS
DEVELOPED BY FUCHS. -

(This section has been written by K. Fuchs, Since the
ooméletion of this lecture series he has developed the following extension
of the Riemann Method +to two.dimensional problems. This makes i%
possible in principle to solve any problem involving stationary flows
without vortices or shocksc) ‘

For stationary flows, the equation of motion (96) and the

equation of continuity (97) becoms:

*Fu+ () Vp=0 (181)

[+

i

Yp+pV-u=0 (182)

In addition we have an equation of state expressing the pressure in terms of

.’: .§. §:. .§O §:0 §.:
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the density and entropy. The e:rz‘:.‘.r«:q;;y:"2 remains cvustant along a Streamline
80 that:

u-Vs=0 (18%)
Let us introduce a parameter { which measures the length along e streamline

and similarly e parameter n which measurea the length along the normals

to the streamlines, From the definition of £ :

&ovzud/dl n:‘g_[ (184
if 4 is the angle between thé streamline and the x axis, then:

tan 0 = uy/ux (185)
and '

a/da:". = cos g d/d>x + sin 8 /oy (186)

3/dn =« sin & 3/dx + cof & b/By © (187

Ve now trensform the differential equations (181) through {18%) into
differential equations along the streamlines and thelr normals. Ikquation (18%)
has already the correct form eince it is identic;a.l with

as/af =0 (138)
A second equation is obtained from the equetions of motion wnich yield the

Berooulli equation (similar to Eq. (101)) :

gT % u2 % Jgg-} =0 (189)
Differentiating Eg. (185) along a streamline we find:
ag 4 R
uaI- = cos & E%L - sml‘a%g 4 (120)

12 ) In everything that follows, aay fumction of the entropy would work
just as well as the entropy 1tself. TFor example, in a pgas obeying the
Y law, pV? = k(S), it would be convenient to use k in place of entropy.
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And making use of Ege. (181) and (18L):

j ?
uag%-=¢cosyo’-:‘; %%-f-sinﬂ%s% (191)

Then with Eqs. (186) and (187):

u’p g’%—- ‘*%% = 0 (192)

The first term in this equation 18 the centrifugal force
which is balanced by the second term corresponding to a pressurs gradient
normal to the streamlino., |

In order to express the equation of continuity in terms
of § and n, consider a fixed point, P . ‘e cen define a cartesian
co-ordinate system with the origin at the point P, and the x axis
pointing in the direction of the streamline which passes throu:h | P Then

at Py both uy end duy/dx vanish. Hence:

du ouy

(at PO) TZ‘ a-b-';— (193)
For a point, P, on a neighboring streamline we have to the first order:

wtr = L B EEN

= 3 ‘
n,y = .),d = Sly"l dn (195)
| Hencao
L
y u~dn (196)
IO I S S U
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Substituting Eqs. (18L), (19%), and (196) into the gitadioh of° ¢
continuity Eq. (182): .
dp 3 ou ) du gé_ _
uaz.;.p%l;l-g-pvyl =uggrtegytue =0 (197

Since P was arbitrarily chosen, Eguation (197) holds for any point.

e can now define two "characteristics" such that if a signul
i8 emitted from any point, the disturbance created cannot reach farther
upstream than the region bounded by the characteristics (see Figure 1%, page 50;
here 0 09 is a characteristic)o, The characteristics meke the Mach anglo,yV »
with the streamlines. Here

sin) = o/u (198)

There are + and = characteristics depending on whether the anzle between
the streamline and the characteristic is plus or minus W'o

If we let A, be the distance along a + characteristic,

-

then:

d a d
== cos ¥ 57 & sinf 3= (199)
d?xi V/ dL '1” n

The equation of continuity (197) becones (making uss of kgs. (191) and

(299) )

ap cos),lf %lsmw[ug%-f-p%lﬂ (200)

d, =% u%p dn © up

v

But the Bernoulli equation (189) can be written:

=0 (201)

-
abn.
is
+
o
= 1
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And ws also have: Je ot
dp dp) dp 2 dp . D2 9P
T = (3%8 37 =c°° g = sin®Yu© 37 (202)

Using these relations to eliminete dp/df and du/df from Bq. (200), we find:

2 -
ag cos Ik dp ~ cos v 1 dp .
7\:1'. == 3w do ¥ sin \}f uep df (203)
Then making use of Eg. (199):
ag cot f dp _ .
d)\i: * puc 3'%1_ =0 ‘ : (20)

We may use this equation together with Eqs. (188) and (189) which involve
distance along the streamlines but not the distance normal to the streamlines.
Or, alternatively,, we may also eliminate the streamlines from the ahove

equations by observing that:
a 4 d
oo+ o =200 ¥ 3 (205)

Hence from Eq. (188)

ds dsS
a, * o= 0 (206)

And thersfore:

(8c) (320 f8) = o (207

Special Case - No Vortices and Entropy Constant Throughout Fluid

Lot us assume now that the mction is free of vortices and
that the entropy is conatant. These two conditions usuwally go together
since both vorticity and varying entropy will in general be introduced into

ouy problems by means of shocks of varying strength-

.:. .E. E:. .E. E:O E.:
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The assumption of no vorticity leads to the identity

weve=pvu (208)

The assumption of constant entropy has as e consequence that p and p are

functions of each other so that:

1 dp
= = 20
[ Vp=V jp (209)
And the Bernoulli equation becomes G:he same a8 EQ. (103)):
u? dp
5= + - = constant = VW /2 (210)
Here, in con*rast to the more general cuse just considored, T isa
constant not only along one particular streamline but throughout all »pacso
Thus for a given valve of ¥ , u is a unigue function of
the pressure. Since alsé © is a unique function of the pressure, the

same is true of the Mach angie which is defined in terms of o and u-

Hence we can define a funotion, F, by the integral:

F= j°°‘t dp ' (211)

pus
For e given value of T and a given value of the euntropy, this function is
a unique furction of the pressure. If we wish to consider the density, p,

as the independent variable rather than p, we may write Eq. (211) als®

in the form (by use of the relation n2 sinzy'a cl= dp/dj)):

g = jsin !J/;cos Vo ap (211+)
The equation {20L) may be wiritten in the form:
5o @1P =0 (212)
Henoe: ) .
&y = g +F (213)

is constant along the corresponding characteristics.
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In general, each characteristic will have. its own value of a e

We obtain immediately the direction of the streamlines and the pressurs at
any point where two characteristios q, and g_ intersect. We need only

write Eq. (21%) in the form:

4 = JZ:L.%._G:_ (21L)

3

F _S_u-_%_ﬁm_ (215)

The material velocity, u, is then given by Eq.(210) and the Mach angle l}f
is given by Eq. (198).

However, in order to find the position in space of the point of
interseoction of two characteristics, we have to integrate onoce mor"e to
obtain the equation of the characteristics which satisfies the differential
ecnation:

dy/dx = tan (£ + /) (216)

For uniform flow (i.e. # and F are constant), it follows from
Eqs. (214) and (215) that &, is the same for all + characteristics and
&_ is the same for all = characteristics.

Consider now what happens when a region of uniform flow is
joined by a region of nonuniform flow. This situation occurs when a fluid
floﬁng with constant velocity along & plane wall comes to a bend in the
wallo This is shown in Figure 17. If the bend starts at a point A, it
will give rise to a disturbance éf’fe\:ting the region to the right of the
+ characteristic ABo The + characteristies in this region start from
the wall., The « characterictics cross from the region of uniform flow and

therefore &, is the same for all - characteristics. Consider now a

o e @ ¢ e
90 ©¢09 280 000 oo
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+ oharaoteristic A'B' with a characteristic parameﬁu§ d;e Since n 18
constert, it follows from S5g. (214) and (215)thut # and F have the same
value for all points. In other words, the direction of the streamlines, the

pressure, and therefore also the material velocity and the Mach angles are

constant elong any + charecteristic. Furthermore, since the direction, g+ '

+

of the + characteristics is constant,
the + characteristios are all straight
lines, The = characteristics hava

of course £ll1 the same direction

4 - y') when they cross a given

4 characteristic, but they change
Figure 17
direction when crossing from
one + characteristic to another-
The quantity g, hss to be determined from the condition tiat
at the boundary, the direction of the streamline is in the direction of the
wall. If ﬁ;all is the angle of the wall with the x axis at the point

where the characteristic starts, and a_ is known from the progerties of

the flow in the regiou of uniform flow, then from Eq. (21L):

G+ =2 6“,&11 - f_ . (217)

and from Eq. (215):

Fof g+ ;:.-:. (218)

I7 the wall curves away from the fluid, d;all decreeses in the

direction of flow and therefore q+‘aud F decreass. From the definition of

F, Eq. (211), it follows thet the pressure decreases (as was to be expectond);

O R
.. °0e 6¢0 000 o000 [ X ]
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henee from tho Bernoulls equation (210) it follows that u increases.
Since o decreases with a decrease in pressure, it follows that the Mach
angle Y’ also decreases and the + characteristics turn clookwisso

However, if the wall curves in the direction of th§ fluid, the
+ characteristics would turn counterclockwise and therefore interseot with
each other, This gives rise to a shock wave. If shock waves are to be
avoided, the + characteristics can turn clockwise only if the fluid is limited
in both directions such that the intersectioms of tﬁe characteristics ocour
only outside of the fluiao However, in such a case, it should be boine in
mind that thg solution given above only holds as long as the - characteristics
come from the region of uniform flowo The solution breaks down (except in
special oases) when the - characteristice start coming from the upper boundsry
in the disturbed regiono

The solution above coincides with the Prandtl-Meler expeansion if

the wall describes a sharp cornerc

The Function F for a Perfect (as
| The function F introduoea above can be esvaluated analytically
if woe consider a porfectegas equation of state. In that case:
Janle = ¥ty - 1) | (219)

and Bernoulli's equation (210) becomses:

w=T. 26y « 1) (220)
Hence
1 u® w 2
ainz][/ = 2% 82 °y o1 (221)
- A
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Furthermore,

%ca =%% gi'g =??:2% (222)
and )

%978 %%%‘ S";' Rl ! +Ea}(;°f %jsiﬁf v (2‘3‘;‘)
Therefore from Eq. (211):

.&‘Es %FE %'E' %’%{8 Y f ;oiea Ine Y (22l)

And this can be integrated to give

Fx oy~ ,%{%tw-ll’/z:icotw] (225)

In this form the function F turns out to be indépondent of both the

constant W and the entropy. However, this is not the case for other

equations of state.
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IV, DETONATIQﬁS?EAVEso VALIDITY OF CHAPMAN-JOUGUET CONDITION

(Lecture by Pelerls)

15, DERIVATION OF DETONATION EQUATIONS

A detonation is & shock wave followed by a chemical reaction
which furnishea sufficient energy to maintain stationary conditions at the
front. The conservétion of mass and the conservation of momentum remain
unchanged but of course the energy squation must be modifiedo

Let + D equal the velocity of the detonation wave. Then, if
the s0lid explosive in front of the detonation wave is initially at rest,

Dy = = Do The velocity of the explosive gases behind the detonation front
is Uy = = Dy + Do Here Uy is positive since the explosive gases move in
the same direction a8 the detonation. The mass of the explosive detonating
por unit time per unit orosse-sectional area is M. All of the other
quantities retain tho same significanco as in the normal shocks. The

equation of conservation of matter remains:

M o= %.e. % " (226)

The combinetion of conservation of mass and momentum Equation (56) remains:

¥ = poopy (227)
vl 4 v2 .
And a combination of conservation of mass, momentum, und energy leads again

to Eg. (61) or:

R CETSIUT )

By e By (228)
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The only difference then between a shock and a detonation comes in the
expressions which we use for E2 = Elo In the case of a detonation,

initially the explosive has an interral energy made up of chemioal energy, E,,
and ordinary thermal energy which appears in the equation of state. In
going to the final state, the explosive releases its chemical) energy. The
problem is exceedingly ocomplicated because of the many simultaneous eguilibria
between C, CO, COp, etc., which are established in the explosive gases at
the conditions of extremely high densities and pressures, eto. Bright
Wilson in the United States and H. Jonee in England have made very thorough
studies of the equations of sfate and thermochemistry of the more usual
explosiieso In order to obtain expliolt solutions to the detonation
equations it is first necessary to assume a form for the equation of
stateo
ETAMPLE: Perfectogas Equation of State.

For the sake of orientation, throwing all attempts at

accuracy aside, let us assume that the explosive satisfies the perfect-

gas equation of stete and E, 1is the chemical energy released. Then:

Bye By = = By + ‘(‘22“‘%"’:"!{7’&‘2‘ ‘ _(229)

For a shoock, E, = Oc Combining Egs. (228) and (229) and remembering that

the initial pressure (usually one atmosphere) is megligible with respect

‘

te the detonation pressure, p,, (usually of the order of 200,000 atmospheres) :
pl 2(? il 1) Eﬁ Y = 1
¥y = Po ¥ +1 ‘*(7 = AN (230)

[ ]
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Oor if y 1is set equal to 3 a¢ is customary under these conditions:

+ % (231)

%%g

Eq. (231) is an exemple of the Hugoniot pressure-volume relationship. It

X
T

expresses V, ln terms of Ps for a‘given initial condition, (pl, Vl)o The
nyperbola of Fig., 18 shows this rclationship.

It is therefore apparent that the equations of conservation
of mass, momentﬁm and energy do not uniquely define the detonation pressure
and specific volume. The values of p, and Va must lie somewhere along the
Hugoniot curve, Chapman and Jouguet Iindependently made the hypothesis that
if one draws the tengent from the Bugoniot curve through the point (pl, Vl)
the point of tangency on the Hugoniot curve is the point (pa, Va)o This
point is labeled C.:.J, in Fig. 18, We can show that for this final state,
the detonation velocity 18 just equal to the velocity of sound in the
explosive geses relative to the motion of the gases, 1.e., D, = Coo
Von Neumann hes shown under what conditions the ChapmsnoJouguet hypothesis
is valid and under wh;t conditions it fails.

On the Hugoniot diagrams the slope tan Qof a line from
P1s V1 ﬁo an& point p,, V2 is proportional to the square of the detonation
velocityo. This can be seen from Egs. (226) and (227) since M2 = tan Q-

Thus
Po - pe
tan @ = v%f’% = 72 (232)

The Chapman-Jouguet hypothesis, therefore, leads to the lowest poasible

detonation velosity. For a smaller angle qk the lins from pl,V1 never
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reaches the Hugoniot curve and this would correspond to the explosion re-
leasing an energy less than E .
For the case of the ideal gas with ¥ = %, at the Chapmen
Jouguet point, p, = h(Eo/Vl) and Vy = (3/L)V1 so that D = [ (Eo)l/é, alss
¢, =D, = (vz/vl)n
= 41,290 os-atm/gm = 1,400,000 £t-1b/1b = 45 x 108/ (£t/se0)? (the factor

(39D = 3(5) 2. For T, E_ = 1000 cal/gn

]

g gets absorbed when we use slugs for our mass unit as implied in the above
equations) . The original demnsity of TNT is 1.70 gn/co so that
V = ;99 co/gmo Thus the detonation pressure for TNT should be
Py = L z L41,290/.59 = 280,000 atmospherae and the detonation velecity
should be D = L x (45 x 106)1/é = 27,000 ft/eec. Both of these values
are much too large. Betteor values ocould be obtained by taking a smeller
value of E;, but the reason for the discrepancy is that the 1denl-gas
equation with ¥ = % is not spplicable in the lowepressure region and only
approximtely true for the very=highepressur'es regiono

Another property of the Chapman-Jouguet point 18 that 1t
has the maximum entropy of apy point along the Hugoniot ocurve. Consider
Ea(VZOS) and remember from Eqs. (12) and (1%) and thermodynamics that

) E?/ave) g ==- p, and (Ené:e/as)v2 =T, so that:

(wa *‘%2 sv = op, 4T HV” (233)

Therefore if we take.the derivetive of both sides of Eq. (228) with respect

te V, keeping Py» VI, and El constant, we get:

4k as 1
W= pp I = ﬂ""‘“& + 5 (V= Vz)ﬁg (23L)
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as Vy = Volpoe d '

Therefore, dS/dV2 1s zere and the entropy hae a stationary value (along
the Hugoniot curve) if either V1 = V2 or else wo are at the Chapmaen<Jouguet

point where the slopso of the Hugoniot is

da Po =

- 3% = v%-f-% : (236)
The condition that V1 & V2 corresponds to a minimum entropy and the
Cha pmane-Jouguet condition corresponds to a-maximum entropy. Until quite
recently the only arguments advenced for the impossibility of V5 being
greater than the Chapman-Jouguet specific volume was based on the smaller
entropy of such points leading to instability. However, such arguments
were not convincing and it remained for von Neumann to prove the impossio
bility of such points onAthe basis of kinematical arguments.

Since dS/dV2 i3 zero in the vicinity of the Chapmane

Jouguet point, it follows that ior this final state the velocity'of sound

is given by the relation:

G2 = (§§§) B \Va) V2 Evl - sa) (es)

and by virtue'of Eqs. (232) and (226):
2

e V2 2
Cam = ——a-vi; 02 = Do (238)

° ® °
¢ oo 0‘. eee cae
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02 = D2 (239)

Thus, if the final state corresponds to the Chapman=Jouguet condition, the
valocity of the explosive gases relative to the detonation wave i3 just
equal to the velocity of soundo

The aréumonts of von Neumann depend on the fact that if we
have an equation of state for which the Hugoniots look like Figure 19 (a)
only coméressidnai shocks aro stable. Whereas 1f we have a pathological
Hugoniot such as shown in Fipgure 19(b) only rarefaction shocks are tableo
This may be seen by dividing the supposed shock into twe partsc If the
first part travels faster than the second part, the shock is unstable and
will divide itself up into many small changes. However, 1f the second
part of the shock travels faster than the first part, the shock will maine
tain itself and show no tendency te split up into smaller shockso |

Tho velocity, U, of a shook ;wa.ve which goes between any
point p;, V3 to a point p,,V, on the same Hugoniot curve is given by a
relation similar to that of Eq.(2%2)c If the medium in front of the
shock is at rest, then the same arguments which led to Eq. (232) apply

(with B, = 0) and
2 = g 2 :
e s. \'f %‘f“..:% = V1< tan @ (2l0)

Therefore the greater the slope D the greater the shock-wave velocity.
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1) Compressional shock in Figure 19{a)- Consider a compressional shock
going from point 1 to point 2. If we tried t; break this up into two
smaller shocks one going from 1 to % followed by one going.from % to 2, we
would notice that { is less for the shock from 1 to % than for the shook
from 3 to 20 This means that the I-to-2 shock will travel faster and
overtake the loto-3 shocko So this compressiomal shock is atable

2) Rarefaction shock in Figure 19{a). The argunent for the instability of
the rarefaction shopk for a Hugoniot such as shown in Figure 19(a) proceeds
a8 before. However, now the 2-to-3 shock is spatially in front of the:
3=to-} shock and therefore the faster veloocity of the 2-to-3 tendas to
seperate the two shockpo Thus & rerefaction shock will tend to decompose.
%) Compressional shock in Figure 19(b) » If we divide the compressional
shock l~to-5 up into two smaller shocks L-to-6 followed by 6-to-5, we notice

that the slope O is larger for the L-te-§ than for the 6-t0-5. Thus the

APPROVED FOR PUBLI% Rl EASE 8. o
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Li-to<6 will travel faster and run svay from the 6:to~S shocke This means
that for this pathological Hugoniot, the compressional shock would be
unstable.
L) Rarefaction shock in Figure J9(b). Since a shock from Seto-6 would
_travel slower than s shock from &-to=l;, it follows that smell rarefaction
shocks will tend te combine te produceé larger discontinuities. Thus
rarefa;tian shocks are stable for the pathological Hugoniot shewn in
Figure 19(b).

| Von Neumamnn postulates that a detonation is made up of two
separate 3tep;52) In the very front of the detonetion wave, the material
is highly compressed b} e shock but no chemical reaction has taken placeo
Directly behind the detonation front comes the reaction zone in which the
ochomical reactions take place. Experimentally it is known that the
reaction zone extends over a distance of between a fraction and a few
centimeters depending on the explosive. In order for the shape of the
detonation wave to be independent of time, it is necessary that the
initial compression shook and the subsequent rarefections (during which
the chemiocal reactions proceed) must both be stable and travel at the
same velooclty, This is a stringent condition and serves to 1imit the
possible finel states of the explosive gases.

It Eo is the final amount of chemiocal energy liberated in
the explosion and n E, is the mmount of energy already liberated at any
time, then we can follow the éourso of the detonation by drawing a sequence
of Hugoniots for different values of n wvwarying from n = O before the

reactions have started te n = 1 where the reactions have been completed.

—s —r ... 6 .:.. 'i. .::. s.:
i1%) J. von Neumann, OSRD No. 59 .
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The normal shape of these curves is showa in Figure 20

The first step ir the detonation is the compression shock
which takes the axplosive from pl,vl ts some point A4, A?, or A" on the
p = 0 Hugoniot. The slope, tan @ = {py = pl)/tve - Vl), where 2 may represent
A, A®, or A" determines the shock velaonity. By the conservation of mass,
momentum, and energy it follows that any changes of pressure and volume
which take place at this velocity must have this same slopeo Thus, for a
stationary detonation wave, it follows that if the initial compression

shock has taken the explosive to some

-]
]
o

- 4l

A LR
]

point A, A%, or A" on the n = 0 Hugoniot,
the states reached during the subsequent '
chemical reactions and rarecfactions must

lie along the line joining pl,V with

1
this point.
Thus it .is apparent that the

initial compression could not carry us

to the point A' because in that case,

t0o AY does not intersect

P1 the line pl,v

1
the n = 1 Hugoniot and therefore the

Figure 20

chemlcal renctions could not go to com-
pletion without forcing the detonation velocity te bo laurgers

The line pl,VI to A which passes through the Chapmap-douguot
point has the smallest slope whioh is possible from this standpoint,

Suppose that the initial compression shock leeds to the

point A", Then as the chemioal reactiqng Erooeed, we can make gradual

- .:o o:~ .:. i"i’iﬁ.i.ﬁ‘ .ﬁ. - |I
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raréfactiona until we reach the point Bo To reach the point B’ from B
would involve an unstable rarefaction shock which would soon break up into
gradual rarefactiona along the Bugoniot from B to the ChapmansJouguet
point. Since the entropy at the Chepman-Jouguet point is a maximum along
the Hugoniot, it would be impossible for the rarefaction to proceed further,
Thus it is possible kinemstically to reach any point at or above the
Chapman-Jouguet peint. And it is impossible'to reach any polnt below the
Chapman~Jouguet point. Whether the rarefactions will proceed from a point B
to the Chapman-Jouguet point depends on the conditlons behind the detonation
front. The wslocity with respect to the detonation front of the explosive
gases at the ChapmaneJouguet point is just equal to the velocity of sound.
But for points, B, above the Chepman-Jouguet point it may be shown that

the velocity of the explosive geses is subsonic. If the pressure ?ontinues
te decrsase behind the detonation wave, the velocity of the explosive

gases right behind the detonation wavo is supsrsonic with respect to the
gases further backo. In this case, the gases further back cannot send
disturbances up to the detonation frount to oppose the rarefaction from

B to the Chepman~Jouguet point. That this change will occur spontanecusly
if not opposed is guaranteed by the inorease in entropy. However, if the
pressure should rise behind the detonation front, the veloclty of the
explosive gases right behind the detonation wave remains subsonic with
respect to the gases farther behind and disturbances can travel up to the
detonation front and maintain a point above the Chapman-dJouguet point.

Thus, in the normel case, we expect the Chapman~Jouguet point. But we can

set up special examples such as a detozefion from a higit explosive setting
L4 [ [ [ e o

° [ [ ]
L] o @
oo ..w
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off & det&nation in a weak explosive where the Chapman-Jouguet condition

would not apnly, Another example is a spherically converging detonation

wvave (see J. Mo Keller, LA=1L43%) o

O

21
a lsy

0o

Figure 21

We can imagine another
situation where the Chapmsn-dJouguet
condition would not apply. In
Figure 20 we-havo supposed that the
Hugoniot curves for constant n do
not crosso. If they should oross it
would be impossible to proceed
gradually from a point A" to a
point B, Since the course of the
shemical reactione must proceed

along an orderly path fromn = 0

to n =1, it would be necessary to pass through unstable rarefaction

shooks. The only possible final states that may be reached under

those conditions correspond to no crossings of the various Hugoniots

between A" and B. Unless this is possible, no stationary detonation

wave is possible for the system. If (bpe/Sn)vé is greater

than zero for all values of n and ¥, <his difficulty cannot

arise. This implies that (asg/an)p

APPROVED FOR PUBLI C RELEASE
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the cxplosiverssction is exothennich) « In -Fzs,. 21 a z# bf crossing Hug-

onoits is snown, tere the previous argugents indicate "that the Chapman~Joug!'®t

polnt is not possible, hut any point at B or above might represent a stable .

gactoaavion wave, /
16. PLANE DETONATION WAVE INITIATED FROM FIXED WALL

Consider a detonation wave proceeding in the X direction
from a fixed wall at x = O. We shall assume that the Chapman-dJouguet
condition holds and the explosive satisfies the perfect gas equation

with ¥ = %. Under thess conditions, at the detonation front:

°2=92=Z° (2l41)

U.=D«D =ED (242)

The velocity of the explosive gases relative to the wall varies between

zere at the wmll and 02 /3 at the detonation front. Therefore woe can

1) Consider By a5 a function of n, p,, and Vao Then differentiate both

sides of Eq. (228) with respect to n keeping Pps Py, 8nd V, constant

3k bbg ov.
(552992"’2 T \3%,/n5.p, ( )92 (py + P2)<§’ﬁz)p2

But (BEZ)/(Sve)n& pp == Pp 80 thut rearranging the above equation:

dY,
(552)?2(?2 "8 ( )onve

Since p, - p; is always positive, (bva)/(én) and (3E)/(dn)
Pp pa,V

Faj~

must have the same sign. .

APPROVED FOR PUBLI C RELEASE
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T,

apply the Riemann method

&Doetonation Front +to this problem. Since
dx = Ddt '
Y =% o =0, The lines
II

of slope u » ¢ conserve

dx = ?:; Dat  the property u - ¢ and

' the lines of slope u + ¢
I .
2 //'> ‘ e conserve the property

ZZ <>
ﬂ,;/’/) . 2 ~< w + 0. Along the wall,
RS R LR T TR TR RO TRRRRRRTR TR
Well -7 vie require that u = 0,
Pigure 22 . Therefore, all of the

lines of slope u - ¢ proceeding from the wall have the characteristic value
- 6. But along the detonation front, u = ¢ = <D/2. Therefore (c)wall = /2.
However, the lines of constant u + ¢ originating on tho wall do not extend
all of the way to the detonation wave since these u + ¢ have the slopo D/Zo
Thus in region I, lying between the wall and dx = % D dt the velooity, u,

is zero and the velocity of sound is % Do

The other lines of constant u + ¢ cenpot originate on the
detonation front, since it itself is a line of constant u + co Thue %the
remaining lines of constant u + ¢ must originate at the origin. They
must be straight lines since the lines of constant u - ¢ which they cross all have
have the same velue. Th; slope, dx/dt, of these 1lines of oonstan# u + 0o

is alse u + ¢ Therefore in region II:

T =F =uo - (2Li3)
But ’ s s . . .o
D .t S f fge 2¢

Neld = é o0 800 e .ase ee B (2&&)
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Therefora:
r x D
u o= - ' (24s)
Region II &L
2<E <o c=% +% (2L6)
Region I :
XD u=0 (2L7)
0< T < 3 JF D
Lo =3 (248)

This forms a complete solution to the problema

If the Chapman-Jouguet condition were not satisfied and the
final state corresponded to a higher pressure and a lower specific volume
than the Chapman-dJouguet point, then u + ¢ is less than D and lines of
constant u + ¢ cross the detonation front., Under such conditions, the
conditions at the front are affected by the conditions in the rear and
the detonstion velooity must be adjusted to £it these conditionso

1
170 PLANE DETCNATION INITIATED WITH FREE SURFACE %)

Consider a detonation wave proceeding from a free surface
at x = 0, We shall assume again that the Chapman-Jouguet condition is
satisfied and the explosive satisfie# the perfect-gas equation with y = %o
This probiem is very similar to the case with the fixed wall. Again, the
lines of constant u = ¢ cut across the detonatisn front, Since u = D/h
and o = 30/ly right behind the detonation fromt, it follows that all of bhe

lines of constant u - ¢ have the characteristic value = D/2.:. All of the

15) G. Io Tayloro Bm-hg, AC.639 o8 400 o000 000 ..r o0
R
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lines of comstent u + o originate at the origin and are straight lines

with the slope

x/t=u+c

(2L9)
Therefore just as in region II of the previous problem:
_x D
u —-ga; ® I; . (290)
x D
¢ = -*2-1-; + E (251)

The free surface has a pressure and hence density end velocity of sound

equal to zerc. It would therefore have the equation:

(free surface) x/t = « D/2 (252)

Along the free surface; u + o =2 D/2 so that the free surface is itself

a line of constant u + 6. Figure 2% illustrates the problem.

« Detonation Wave

dx = D a4t

+ O sx/t

¥R

u

t-=>

~\‘~:?\\u o 0 8 2 D
Free Sur{aoo']
dz - - 2 DM
B Figure 23
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318, SPHERICALLY DIVERGING DETONATION WAVESIq

Spherically diverging daetonation waves are cxamples where
the Chapuman-dJouguet condition applies. The following treatment is due to
G. I. Taylor.

If we suppose that the velocity of the exparding detonation
wave 18 radial and has the magnitude u, then the .equation of motion (96)

becomes in spherical coordinates:

du du 1 9
% *UE T 5 & (253)
And the equation of continuity (97) becomet!l?):
' > 12
a‘?, ==z 3= (r2 pu) :-29% . -%.‘. {pu) (esl)

16) G. I. Taylor, BM=L9, AC-639
17) If ry is the unit vector in the radial direction, it may be expressed

in rectangular coordinates:
r, =1 (=/r) + 3 (y/r) + k (z/r)

Thus the equation of continuity is
3p _ .} x ) 3 g
% =9 ) == (o) LHeud)- Ful)

= ou [ or or ¥l 2 puyl _ ou S oy
35 - [xs;;*y"sy‘* Za";J 3?(‘?‘)"“*;“”%?{9%)

, 9 19
=2 5. = (pu)=- 2 5 (purd)
:‘ .E.
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The equation of motion is then the same as for the one-dimensional plane
case, but the equatio;x of continuity hes the additional term - 2pu/"r. We
seek solutions of the equations such that u, p, p, and ¢ are all functions

only of a = r/to This would mean that :8)

3,43 =0 (255)

dp ¥p
%ngi'&‘g?- =0

So that the equation of motion (25%) becomes
(u - a) dufda = (1/p) ap/aa (256)
And the oqu'a’cion of continuity becomes:

(a-ae  du 2
a

PRy + =0 (257)

But since o° = ap/dp, dp/da = ¢© dp/da s0 that Egs. (256) and (257) may

be combined to give:

2
uea dp du  2u u = a\ du
=T B detTe s(c ) da ' (258)

Or eliminating dp/da:

[1 - (v = a) 2/::2] du/da = - 2u/a (259)

18) This followa sinocae:

du du _ foa da du___a afdu _
STregr |ty aa'~[='€+¥.’ & =0
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In Eq. (258) it is conveniont to represent (1/p)dp/de as
(1/p) (dp/dce) dc2/da since o 1is a function only of the density and the

density may be regarded as a function only of o, Thus letting

£ =& g%i | (260)
it follows that:

02_1‘ dp d02 -

e (261)
For a perfect gas, £ =y = 1 (2é2)

These equations may be set in dimensionless form by

replacing the variables u and ¢ by the dimsensionless quantities:

& = w/a (263)
A = u/c (2&)
Z = {n a/ao (265)

Here a, is the value of a for the radius of detonationo

Combining Eqs. (255), (253), and (260) we get:

d %52 < p2(q = 1)2

==-5 a,‘} a,ed(.,e.. 172 ' (266)
Y __2a 62 - £8%(a - 1) - 8%(g = 1)? '
de’ = age e -88(a - 12 (267)
aZ2 1

d “& (263)

Combining Egs. (266) and (268), it follows that:

a 2 - 2 o 1 2 .
5%:" ~a %ﬁd ';%’:gf(za - 3)2”‘ (269)
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-87.

And combining Egqs. {267) and (268): -

a8 2q €2 £8%(g 1) =f5%(q = 1)2
-V 2&2 a2 oasz(c - ﬁg : (270)

To solve these equations for any particular case it is
first necessary 4o know the equation of stateo We then proceed a8 follows:
1). PFirst calculate 62 and do°/dp as functions of p.o Next tabulate
£ a8 a function of &<
2)o The ChapmanedJouguet condition and the Hugoniet relations are the
same as for the case of the plane detonatinne They determine the
detonation velocity, D, and the value of u =D - D, = D(3 - 1/‘.-'1) at the

shook vave fronte (Notice that u ocorresponds to the u, of the plane

2
detonatinn case.) If R is the redius of the detonation wave at any
time, then from the form of the solution which we require:

R=D¢t (en)

and at any other point at this time, » =& to Therefore we have the

similarity condition:

a/D = /R (272)
Therefore it follows that:

u/D =g r/R - (273)

¢/D = ar/8R (27L)

Z = f{n(x/R) ' (275)

But right behind the detonation frcnt, where r = R, according to the

Eq. (27%) and the conservation of matter (226) :

e =ub=1-o 1/?)‘ ‘ (276)

APPROVED FOR PUBLI ¢-RELEA E: T




APPROVED FOR PUBLI C RELEASE

And the Chapman~Jouguet condition gives:u + ¢ =D 8o that from Egs. (273)

and (274) for r =R:

_u_ e ] 1
=ptpEetEF < ( ,3) (277)
or

g = (i/;) =1 = 1: w ==l (278)

The relations (275), (279), and (278) give the velues of the
variables e, 4, &nd Z at the detonation wave. Then Eqs.(2&9) and (270)
can be integrated numerically to give the conditions at any other point
behind the detonation wave,

Just a8 in the case of the plane detonation wave initiated
at a fixed wall, the velocity goes to zere at a point between the detonation
front and the center (In the case of TNT with initial density of 1051,

H. J&nes has computed that this point occurs at r = <418 R. This is to be
compared with the value x = o577 Xjet which he calculated for the plane wave
problem.) o The pressure and velocity behind the spherically diverging
detonntion wave decrease much more rapidly than for the case of the plane
naves, Figures 24, and 25 show Ho Jones' results for the THT,

19 SPHERICALLY CONVERGING DETONATION WAVES

Keller (LA-143) has considered the case of spherically
converging detonation waves, This problem is much more difficult than the
case of the spherically diverging detonation waves. No stationary solution

is possible, At first, the Chapman-Jougust condition gives the detonation

velocity and the pressure and velocity rig‘ht ioeh}mi he ;ietonat:.on fronto
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Gredually at first, rapidly later, the pressure and velocity at the detonation
front rises and the detonation velocity inoreases. By the time the detonation

waves have travelled half way to the center, these sffects become very important.

No analyticel solution has been obtained and it was necessary (even in the

case of a perfeot gas with ¥ = %) to make the calculations with the help

of the I.B.X. machinen.

“.. .:‘ :‘:C‘.E‘C E:.. 2..:
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V., SHOCK WAVES

(Applications to Spherical Blast haves, ete
p P

Lectures by Penney

(20), GENERAL EQUATIONS AND VIEWPOINT,

Blast waves are zood examples of
a previous ssction,
water,
for water, y = 3.
that uj = 0O,

Let us surmmarize the shock-wave

the blast waves:

In either case, the perfect-gas equations suffice.

0)..

the shock waves which we studied in

¥e are usually interested in blast waves in either air or

For air, y = 1.4 and

Usually the matter in front of the shock wave is at rest so

equations which are applicable for

, wp =Dy +U= or U= < Dy (279)
ug =Dy + U (280)
From Eqs. (56) and (52)
W = pypy (8=103/(,=1) = 0§ of = 0f o (281)
Here, of course, Y= pz/bl and £ = Pg/bl
From Eq. (130):
and from Eq. (67)
o = (=)t (v+1)E (265)
(v+1) + (y-1)§
Combining Egs. (279), (281), (282), and (283)
o) pp AE-1) 1 .
To(2y B = [(r-1) + (yr)8] (284)
7 \ywpy/ o0 (9-1) 2« . '
.00 0:0 E:o .EO :.:0 o:o:
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e oo 000 oee
From Eqs, (280), (281), and (283): ‘e .

Uz Dz+U Dz P1 1 2(-1)
_—= 2le—sl= —= 1 .- = - (285)
U U D1 P2 1 (y-1) + (y+1)3

Furthermore, it is convenient to discuss the temperature, Té s to which the gas
returns after the wave has passed and the pressure returns to its initiel
value, py . From the perfect-ges law, pV = R T , and the perfect-gas adiabat,

pVY = k(S), it follows that:
T/t = Vi = () (eafen) Y =8/ (26)

From Eq., (72) it follows that the ratio of T; to T; 1s connected with

the change in entropy by the relation:
?
AS = cp Ln 1.'2/Tl (287)

Instead of considering Té itself, we can consider the increase of temperature,
8, such that:
"
I, =7; +6 ‘ (288)

For weak shocks, it follows from Eq, (73) that:

o/t = (1/2v) (1-1/4%) (§-1)° + oo (289)

Since the change in entropy is equal to the heat dissipated

divided by the temperature, it follows that for weak shocks where
45 =G n [1 + o/s:ll =Cp o/T) + .. (290)

the heat dissipated in the specific volume, vy = l/bl s is T{A8 = cpg o
Therefore the heat, H, dissipated by the blast wave in passing through a unit

volume of matter is
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H= piTi48 = plcpe

For air with v = 1,4 and T; = 273°K, we get:

£ |2 3 5110 |50 100{ 200

8(oK)i2.5] 10,3} 31|97 | 579} 1065 | 1417

The enerzy dissipated per unit volume of air is therefore small if ¥ is less
than 10, but very large for higher compressions.
For water at 2730K, if we express p, in kilotars (epproximately

1000 atmospheres) it has been found that:
6 = ,0835 pg3 - 0118 ppt + 0085 pp® - .01 O pp® (2s2)

so that even at a distance of 2 charge radii where py = 20 kilobar, & = 20%K.
Or at a distance of 8 charze radii where p, = 1 kilobar, e = ,025629K,

Thus we oan neglect the chenze of the resultant temperature in all underwatex-
blast problems,

For verystrong blast waves, the hydrodynamic equations becomeo very
simple, For example for air with y = 1.4 , Eqs. (283), (284), and (285)

bacome:

=6 ; UB/c = 68/7 § /U =5k (293)

For weak shock waves with & less than 2, the shook equations can he

expanded in powers of (f-1). Acocrding to Eq. (68)3

=1+ (1fy) (8-1) - (/2¢) (1-1/7) (§-172 + oco (294)

Then {from Eq. 282),

: 2 - . .
[v3
2 2P Prod o 1w (1 - 1/vi(EeD) /2 1) (8103 L

{298)
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from qu (284‘) 'Y °e EO EO. .:.E
2 1 )
Zoere X2 (gl (296)
e 2y

/ ‘

and from Eq. (285),
u 1 + 1 2
-—gns— (‘g ul) - L"—"“" 35’1) + oo (297)
U

Y 2y

(21), DIGRADATION OF STRONG BLAST WAVES (NOT NEGLECTING ENERGY DISSIPATION).

For stronzy blast waves in air, it is not possible to neglect the
dissipation of energy and the resultinz ontropy gradient in the air bshind tho
blast wave, The hydrodynamical eguatiouns in spherical coordinates then become
somewhat too compiicated to solve analytically, Penneylg) has developed an
extension of the ﬁiemann method which is applicable to this case. He introduces

two funotions P and Q defined by the relations: .

P=g+au : (298)
Q = g - U (299)
Here u is the radial velocity of the zas (assuming that its motion is strictly

radial) and ¢ is the usual Riemannian variable:

-

&2 = (op/op)y . (301)

dp (300)

olo

where

since a constancy'of © implies the constancy of entropy.

Making use of Egqs. (253) and (254) for the equation of motion and equation of
continuity in spherical coordinates and making use of the fact that & remalns
-constant for a given gas particles, i.e., dS/bt +u 69/6r = 0 , it follows

after a considerable job of algebraic manipulations that:

A S

19) W. G. Penney, (Bl-37; RC-260) IO I T O T
0.0 o:o :oo—

[} . ° .

M EasE " T
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1) For a point moving with the sp&vﬁ ﬁr{at 5 v-”‘é».

aP = gy [. zuc/r + c(oc:/be)p (08/or) t] (302)

2) For a point moving with the speed dr/dt =u = ¢ ,
aQ = dt [e 2ue/r - c(aq;/oe)P (ee/o:-)t] (303)

Thus P and Q serve the same purposse in the blast wave calculations as the
lines Of constant ¢ + u and constent o - u in the one-dimensional Riemann
method, The only difference is that now the line with a slope of u + ¢ will
have a value of P which varies slowly with time, These quantities lend them-
selves to a point-by-point numerical integration such as indicated in Lecture I,
Section 2, For a perfect gas, ¢ = 2c/(7 - 1), and the expressio;s for 4P and
dQ, Egs. (302) and (3035), become:

1} For a point moving with the speed dr/dt = u + ¢

4P = dt [= Zue - ( (Tﬁg\ﬂ (502")

r

2) For a point moving with the spesd dr/dt = u - c,

2 2 +
dQ = d% .,...ES,,.S_._ 3._. ‘1‘16 > (303°)
r y-1 dr A

The boundary conditions are those for shock waves summarized in Egs, (279)
through (285) or %q. (293).

The only tricky feature of the calculations is that the lines with
the characteristic, P, aro generated with the speed dr/dt = u + ¢ which usually
is faster than the velocity of the tlast wave. The characteristics in front of
the shock wave must be disrezarded.,

In this way, Penney has found (in agreement with experiment) that

the peak overpressure, Ps = P} = Ppax 5 in lbs/ln Qroduoed by the explosion

i
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of W 1bs of high explosive at a distance R .f}aez, :uay be .i‘em qaen‘ted by

the relation:
1/3
1/6 »,1/2
AW n:t /'/h /
R

(304)

Pmax ~

Experimental values of the constants A and B for various ex-

plosives are:

Explosive A B

TNT (oast) 10,7 7.1
Torpex . 12,3 6.3
Dithekite 12,0 5.6

This peak pressure deorsases much more rapidly than would be expected from
acoustical theory. In a distanco of between 8 and 20 ocharge radii the
peak pressure falls a factor of 9 as compared to a factor of 2 on the basis

of the theory of sound, The peak pressure at 20 charge radii is around 4

atmospheres.

(22), SHAPE OF BLAST WAVE AT LARGE DISTANCES,

At large distances where the peak pressure is less than twioce the
ini/}al pressure ( £ less than 2), we oan neglect the energy degradation and 3,
In that case it is easy to show in a rough qualitative fashion that the peax
pressure should decrease inversely proportionally to the distance, R. Using

the mathod of the last section, we have:

o= -2 (¢~ o) (305)

v=1

The additive oonstant, 201/(y - 1), is added for convenience. It is easy to

show that any constant number added to ¢ cannot affect the conditions in the

Eiii izsgi, (295), (296) and (257 )

fluid, Then right behind the blast wave {using

APPROVED FOR PUBLFC RELEASE °.* ..
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... .:. :.. 00 oeoo o6

, up “eUS 3o 5 3. &

- ) - c . - — e __ e ') Y : : :
Q=0 -ug =T (op = o) = 5= 'gp- 81 AL G

P

EIHCTER = IR I

- o] [.1. (g-1)-Y21 (s =1)2+.N} [1+ 0 g1) + ..,
¥ r o2

= 0O through terms of the order of (§ -1)2

Also it may be shown that at points behind the blast front, Q remains

practically zero. This follows from the fact that

d4Q/at = - 2uc/r Where dr/dt = u-o (307)

The value of v is smaller than its maximum wvalue, up = (01/‘Y)(~§~=1)9 and

dr/dt is very nearly equal to =0y o Therefore

d 2¢ 1
oo gy - (308)
ér Y r
or '
’ 2
QR < _3-1. ““1) gn(r/RBlagt) (309)
Y
and the value of Q is negligible with respect to ¢. Therefore taking
4
Q= 0, u=a,andP=u*o=;(f:f (cncl) (210)
But
dP/at = «2uc/r = - 4c(o-c1)/(y-1)r (311)
when:
dr/dt =u + ¢ =CZ/(7=1?} (c=0y) + o (312)

Differentiating P from Egqs. (310) and substituting into (311)s

APPROVED FOR PUBLI*E€ ReLBASE
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o ve ¥ ves :': o.i
qc/dt = _ o(o-ol)/r ':: .§. E:. .5. E:' E.: (313)
. Combininz Bgs. (312) and (313),
dc 1 c{c-cq)
— L - : 1 (314)
dr a c + [2/(Y<.~1)] (o=cq)
or-
& o [ L. (4 .1,} (515)
r c=Cj] y=1 c

and integrating Eq. (315),

r o2/(r-1) (ceoy) =6 (316)

Here E; is a constant alonz the characteristic.
If we know that at the point r = r, at the time t = t, the
velooity of sound has the value ¢ = ¢, and frox-n BEq. (316) the corresponding
‘ value of the constant is G = G, , then we ocan use Egs. (313) and (318) to tell

us the corresponding values of r and ¢ ata subsequent time, t. Using

Bq. (316) to eliminate r in Eg. (313)s

do . L (xy"1)/(re1) (cwc)? -
w "G ° (c-cy) | (317)
or integrating .
. o de
tet, =0 5 : (318)
° e %o c(Yﬂ)/Y-l) (c.‘;l)‘Z

I (y+ 1)/(y - 1) is an integer, the integration may be carried out explicitly.

Thus (using Dwight's Tables of Integrals 161.2) ,

APPROVED FOR PUBLI'C RELEASE * °°
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T T e Y ee e

o0 @ » L 3

... .:. :.. .:. :.. [N J

For Y = 3 ..: s 5. : X E E

[ ] : :.. ....

~ z ok

bty = 2 | ( 1.2 )+ ( ) - ( +=n ooy (19)
z o ©g °°°°1 1 S

°1
and for other values of y such that (y + 1)/(y - 1) is an integer, the explicit
integration_ is carried out by means of a simple recursion relation (Dwight's
Tables of Integrals 161,29). From Eg, (318) or (319) we can tell the value of
¢ for any time and then from Eq. (318) we know the corresponding radius,

There is only one objection to the above procedure. The front of
the blast waves does not travel as fast as the propagation of the characteristios.
Therefore the position of the shook front must be calculated rsparately and any
values of the radius obtained by the above procedure which lie in front of the
shock front must be discarded, At any time, the position of the shock wave,

R, may be determined from the integral: |

R = S U dt + constant (320)

Here the integration must be ocarried out numerically with the help of Eq. (296):
U= + (I;t_l (¢-1) +... 0
e cl . I,V 01 g' ooo (296 )

The value of $ to use in (296!') can be computed from the values of o obtained

from the characteristics,

The above treatment is partiocularly useful in analyzing the re-
sults of a blust meter whioh measures the pressure at & given point as a
function of time. Knowing the pressure for all times at this one point, we

can then calculate the values of G and obtain the shape of the blast wave and

the pressure at any other position.

|

.00 OEO E:o oEo E:o é.i
O BELEASE T
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(23). TAYLOR'S TREATMENT OF STRONG GLasT wryns ( §1:18arderyisbLUTION).

. Taylor developed a similarity solution for the conditions within
and behind strong blast waves. He treats the radius of the blast wave, R, as
an independent variable, All of the properties of the zas bohind the blast
wave are then expressed in terms?o) of Rand y = r/R, Assuming that the blast
wave starts exéanding from a point source, Taylor seeks solutions to the

equation of motion, equation of continuity, and the eguation for the conservation

of entropy (behind the blast) such that:

-

p/py = A% R f(y)/ci (321)

. p/p; = &ly) (322)

w= A R*2 n(y) (323)

¢ ar/at = 4 R=5/2 (524)

Here the constant, A, is related to the snergy of the system. In replacing

the variables r and t in the hydrodynamical equations by R and y 1t is

convenient to set:

e\ - &R ¢ _y @& 9 .38 .y 3 (325)
T R ‘R

at 4t oR R dt oy 3y
£] = ..]; 2_.. (326)
or }s R oy

The equation of motion {253} then becomes:
(3/2) h = yh* + hh* 4 £9/(yg) = O (327)

and the equation of contimuity (254) becomes:

’ 20) We have changed Taylor's notation in the following way:
Taylor notation vikd £, 0 .e
Notation, this report]y|e f,e :ilm A AN
99 e :u o:¢ ::. 30. -
o e . o
*

* o .
? os o 2 aee
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o o O [ '—vwvv—‘——.—v.. . —_
(hoy) g' +2 g bfy + b g = 0 o7 °3* 817 N30 00 8T (328)

Since the equation for the conservation of entropy for an element of fluid

(after passing throuzh the blast wave) following this element of fluid im its

motion is

‘Z:: *u {3—9 (™) = 0 (329)
1t follows that:

A 2
oo 2lay+ 6 tdon - 2w /3 | (3308
[(v-n)% - £/g]
b= [(1/73 (£/5) - 38/2] / (y-h) (3300)
g = e;[fﬂ + 2h/y] /(y-h) (330c)

These equations can be solved for f£¥, g?; and B in terms of £, g, and h.
Knowing the values of the funct:.ons f, g, and h, at the shock wave, 1.0, ¥,
we can integrate these equations numerically to determine their values at any

other value of y., At the shock front:

U = drfat =4 r-3/2 (331)
5(2) = pp/oy = (yH1)/(v-1) (332)
n(1l) = uy/U = 3/(yH1) (333)
£(1) = (B0} (py/py) = 24/(¥*1) (354)

Solving these equations numerically for air with y = 1.4 and for a substance

with y = 5/3 Taylorzl) obteined the following results shown in Table I ard Fig.26.

21) G, I. Taylor (BM-35; RC-210) p. 12 .
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o 0 @ T e . o.o
JIABLE LRt CE N
Air with v = 1.4 e ‘e oo
y £ h g \
1,00 1,167 0,833 6.000
0,98 0.949 0,798 4,000
0.96 0.808 0,767 2,808
0.94 0.711 0.737 2,062
0,92 0.643 0.711 1.534
0,90 0,593 0.687 1,177
O.G8 0,556 Q0,665 0,918
0,86 0,928 0,644 0.727
0,84 0,507 0,625 0.578
0.82 0,491 0,807 0.462
0,80 0.478 0.590 0.370
0,78 0,468 0,573 0.297
0.76 0,461 0,557 0.239
0.74 0,455 0,542 0,191
0.72 0,450 0,527 QOISZ
0,70 0,447 0.513 0.120
0.68 0,444 ' 0,498 0,095
0.66 0.442 0,484 0.074
0.64 0,440 0,470 0.058
0,62 0.439 0,456 0,044
0.60 0,438 0.443 0,034
0.68 0,438 0,428 0,026
0,56 0,437 0,415 0,019
0,54 0,437 0,402 0,014
0,52 0,437 0.589 0,010
0,50 0,436 0,376 0,007
Approximate Calculation for y = 5/3
y £ h g
1.00 1,280 0,750 4.00
0.95 0,892 0.680 2,30
0,90 0,694 0,620 “l.14
0,80 0,519 0,519 ;53
0,70 0,425 0,445 0.29
0,50 G.379 0,300 . 0,05
0,00 0,344 0,000 0,00
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Figure 26, Air, with v = 1.4,

Unfortunately, we camnnot satisfy the shock-wave boundary conditions for weak
shock waves. Therefore this solution is only satisfactory for strong blasts

and becomes progressively less sa¢igfactory as Jhedlast becomes weak .
. s ¢ [ P
0.0 o:. .::. .:. EO ® 0
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It is easy to obtain the total ené‘:z;i;y gye%ind sthdy bit.z:st wave in terms
L] [ ] e o
e o [ [

. of £, g, and h, Let this cnergy be Ey,¢ », then: * \

R
Bgot =lsn$ (é pu? + p/p «-1) rédr
()

1 2,3
= : X 2n=3, 2 1 A"RTL) =z 2
= 4n 3 [2 plgA R™n" + ( Yol ) Pl 02 Ry dy
o 1l
2 ! 1 2 f 2
- A h & ceerm—ra— 335
4npy L 58 -1y | Yoy (335)

The totel enorgy is therefore expressed in terms of a definite integral which

is only a function of gamma., Thus for air with y = 1.4, we get:

Egop = 5036 ppA® (336)

and using this expression to eliminate A%:

P = o133 TNeor £/RS (337)
@ u = ,442 (Etot/pl)l/2R°5/2h (338)
U= 442 (Egoy/py) Y/ 2R=3/2 (375 )
P =P8 (340)

These equations form a complete solution to the strong-blast-wave problem,
Notice that from these equations it is clear that, for a given total energy, p
!« independent of the atmospheric pressure or demnsity, u and U are inversely
proborﬁional to the square root of the atmospheric pressure or density, and the
time scale is proportional to the square rcoot of the atmospheric pressure o¥
density.

The enerzy W dissipated (in heating the air behind the shock wave)

can be expressed in terms of the Taylor functions since (using Eq. 72):
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R . .
W = 4nT;C py g a:.n[(p/pl)l/Y (o2 k?’ar 33 (341)

(4] * .
To zet a lower limit to the dissipation, this integral cen be carried out to a
distance, R,, where according to the Taylor eguations the pressure in the shncic
front is roduced to the inmitial pressure. DBecause of the poorness of the
approximations involved {vhen the shock wave goes from strong to weak, this does
not give a very accurate value. Thus Penney (BM-37; RC-260) found for air;
N/Broy .18 3B .52 061 .64 .64

R/R o1 02 -4 6 -8 1.0
(see also W, §. Penney and K. J. Kynch; Bl~47: RC~286).

The energy dissipetion from a point-source explosion according to the
Taylor theory is not very accurate since the rate of dissipation of energy is
still appreoigble when the overpressure 1s a few atmospheres., This is true
because the lerze area of the sheck front at the lower pressures nearly compen-
sates for the much lower dissipation per unit area of the shock front. Unforta-
nately the similarity solution of the point-source explosion is not valid as
far as this. Nevertheless numerical integrations have sucoceeded in evaluating
the blast wave to such a radius that the overpressure is nearly as small as ai the
limiting radius of military importance. The total dissipation at the stagze
where the overpressure is of the order of one atmosphere is about 80 percent of
the energy reloase. Such an estimate of course only applies to the highly
ldealirzed system envisaged by Taylor. .

Other numeriocal estimates of the energy dissipation in the blast wave
from an explosion can be made. Experiments in air on bare charzes have suc-
ceeded in contributing contours of the shock front at various times. Numerical
integration over the shock front at various times have shown that the energy
dissipation up to the stage at which the overpressure is a few pounds to the

square inch is roughly equal to the usually accepted value of the chemical energy

.oo 0:0 :00 QEO E:O :o.
APPROVED FOR'PUELIC RELEASE"




APPROVED FOR PUBLI C RELEASE
¢ o - U

of the charge, Since the blast wave at this sta;«; E;?.) J.i.hi‘? ‘:J}z energy content
of about one guarter of the chemiocal energy, there is an apparent discrepancy
in the energy belance. The most likely explanution is that the extra energy
results from afterbirning of the products of the explosion at the early stages
when the interfuce between the explesive products and the air is npt sharply
defined; because a sharp inferface would be unstable.

The energy dissipation in water cen also be calculated using purely
theoreotical results on the shock-wave pressures near in., Roughly thirty percent
of the chemical energy is wasted irreversibly in heat by the stage that tho shock

pressure is of the order of one ton per square inch, i.e., at approximately

50 charge radii.

 d

(24) VON WZUMANN THEORY OF BLAST WAVSS 2)(uQ¢ATFR GENERALITY BUT STILL WITH
SINILARITY).

Von lleumann has developed a theory of blast wuves which is slightly more
seneral than the treatment of either Taylor or Penney since it is applicable to
one=, two-, or three-dimensional problems and can be used with general boundary
conditions, For example, it would not be necessary to have constant density out-
side of the blast wave., However, to illustrate the method let us confine our
discussion to the same spherical expansion problem treated by 4. I. Taylor (see
last section). Llor this purpose, let us define:

R = blast wave radius

ros = co-ordinate of particle at time t =0

r = co-ordinate of particle at time t =+t

J = ratio of ¥inetic to internal enérgy of particles = é uZ/E
Von Neumann then seeks a soihtion satisfying the similarity conditiomns:

ro/R = 2(J) ' ' (342)

r/R = y@) (343)

22) G.J. Eynch, (Bif.82; MS-69). 6 in thp Kynch tngatment is called J in the abovs.
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as his independent® varzahwﬁs=° Ibu S

He then takes t and J

dry = z-%g dt + RZ' ad (344)
dr = y.éﬁ dt + Ry dJ (345)
“or eliminating dJ between these equationg,
ar = 48 “ﬂia+ﬂd% (346)
dat YA YA

Therefore:

u = (dr/bt)ro = (dr/dt) [yc Zy°/2°] (347)
and

(548)

(arfor )y, = y/2¢

For strong shook waves, we have the boundary conditions at the wave front

J=1 ‘ p/py = po/py = ) Y
- - 2 dR

uEug Toag == E=g =}.u2= (-—-— v
‘ Y "2 T U (1+Y)’2 dt .

o/py = = (y+1)/(y-1) |

In addition to satisfying the boundary conditions, the functions y and 2

must satisfy the four equations:
1) Equation of contimuity,

p/py =

o3y = 22 © (350)
or> /i Py
2) Equation of adiabatic motion (after shock wave has passed).

p/py = (p/ps)Y (351)

3) Equation of state

5 = p/ pp(v-1)] (352)

[ : : . L X ]
h °
N T L N T -
°0¢ se0 o0 tee oo
* o o o o
E . o : ¢ 4 s ¢ :
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This ,uo-*s fror with the

4) Equation of conservation of ex;e:,_.,y:.,

equation for the adiabatic motion is equivalent to the equation of motlonj

%e will develop this condition later., First, use the above equations together

with the boundary conditions to express E in terms of % and y,

- i . .
p - Psz 1 - pzplY 1 A Zv ¥-1 \ (355)
Ply-1) " (y-2)py  (v-1)e} ¥y ' ‘

- G E&EETE
= ( Y ><Yﬂ1> (ZZA >Y° <dt>2

Then
: 2
2 (y-zy3/23)°/2
2 / (354)

J = (Yz 1) (7-1 Y (le' )Y"

3
f

This equation gives one reletionship between J and £, Z, £7, Z'. Now to

get the total energy in the system, Egg4s we‘peri'orm the integration:

R
Bioy = 4n SO p(E + u2/2) r? ar (355)
But
dJ = dr/Ry* (2%6)
2,,/.2
p=pp 252'/¥°y
= Rzyz
E+vuwif2 =E (1+J)
Therefore 1 :
(357)

Bpop = 4nS p1 2(1+J) %22z 'das

J o

* e o o * oo
0. : . s : o o

. e 3° 5 * &
40 000 000 4o :oq o

3 .

° o . b o

® o o0 sse

o
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Lot i ~2z s 2 :
GJ) = {Y‘:l)( )( z%2' (1+J)

] Zy? \2
=(/2) (3 + 1) 2%2°Gy - ) (358)
Then 1 3 2
Biot = 4n‘§ Py R (aR/at)® 6(J) a4
[}
1
= R3(dr/dt)® 4n SJo py G(d)ad (359)

If the gas oxtends to the center, J, 1is sero. The squation of conservation of

energy states that E is constant with respsct to time, The oniy way this is
tot

possible is for

R3(dR/4t)® = constant (360)

or
(361)

dR/4t = A R°3/ 2

This result is then the same as in Taylor's theory.

The total energy of the zza lying within a small sphere whose radius
is determined by the sondition that the ratio of its kinetio to its potential

energy is J 1is given by the equation:
3 2 J
Egoy (9) = 4nR°(dR/dt) S py #(¢) aJ
Jo

(362)

The rate at which this geas does work on the surrounding gas is given by:

ancpu = OEtot(J)> = . 4 Bogld) o (363)
To dd oL fye
| —
ORI S S SO SO
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7

But . | . e oo o oo ::
(9_{)2, - Jpop et @ (364)
vat R dt se

dBeas.(9) .
Sibot | - ang%py G(J) = 4nR%p, ( ;Ql) (%-;I

< )Yd 722" (143) (365)

{366)

ny (EY dn @YY G o

P“Pa
\pg
aa zy
u = = - 368
dat ,<? 2 ( )

" So that using Bguations (353) through (368), cencelling and rearzanging Eq.{(365)

becomes: :
.o x*d (z62)
Zy? vy=-1
And substituting this into the equation for the conservation of energys
2
1 /fd+1
v -] | ce—
I ) @ro
- + -
# \y IR EETIEE R
-Yg_ Y + 1 Y - 1

Solving these two eguations simultanoously, von Neumsnn obtained y and 2

in the completely analytical form:

134547 y-12 .
7(s) = ¥/ (2Y+L) (J+1 )2/5 {5(2;7)%2#1}\’ 152-v)(2v*1) (s71)
N -y )
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' TSR

. bbb P (ra)/even)
y (1) = g¥/arH) (:1_2)’2/5 (pemnee] SN (I
T~y Y

2
(372)

At the origin, J 1is gero,
q dimensional instead of three dimensional,

In case the problem is
the equation of continuity and the element of volume in the integrals are

Kynch has used this method

changed., Otherwise one method remains unchznged.

to consider the effect of explosions in a medium of vaurying density.

a—
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(25). BETHE'S MODIFICATION OF W K.B. METAOD (WEAK SHOCKS, NO SIMILARITY)
Lecture by Bethe

Bethe devesloped u Semiacoustical method for treating weak shoocks vhere
no similerity conditions are possible, His method is similar to the wellecknown
WoK.B, method of quantum mechanics. It is based on Aacoustical theory as the
zeroeth approximation,

In &a%oustical theory, the overpressure is made up of a wave traveling

outwards and a wave traveling inwards. Thus:
p-p; = £e(t-r/c)/r + z%(t + r/fc)/r (373)

The factor 1/r is due to the geometricel attenuation of the pressure, Here f°
and g' are arbitrary functions. The wave f' is traveling outwards since its
argument remains constant when r/b increases at the same rate as.to Similariy
g' represents an incoming wave. Eq, (373, in the most general spherically

symmetrical solution of the acoustical equation:
2
1 %y . .
dp = 52 -5;5 {374)
The material velocity , u, is given by the relation:

u=(f -gt)fore + (£ + g)/pr? - (379)

Notice that the inverse square terms in tho second bracket exist even for
incompressible materials with infinite velooity of sound. In the acoustical
theory, waves always retain their shape since the small varistion in the velocity
of'sound for the infinitesimal pressure differences considered is negleoted,

This is not true in eny aotual caese, even for Very weak shocks.

The Riemann method could be used for very wegk shocks in one dimension,
te o o *3¢ 2%e 3
3 [ 3

but the additional term, 2up/r , in the equation ©f
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impossible to use it for the case of any sort of spherical wave,

Bethe has developed the W.K.B. approximation to treat those cases
where the half wave length, L , is very small compared with the distance, r,
from the wave to the origin. Under the.,e conditions, 2u/r will be small com-
pared with &u/ér , and generally, in the disturbance, the hydrodynamical
variables change rapidly compared to r. 9YWith these assumptions, Bethe showed
that weak wavelets which propagate with the velocity ¢ + u maintain constant

values of the characteristic, (¢ + u) r. In ¢ dimensiors they would have the

characteristic (o+ u) r{a~1)/2, a5 1q Eg. (305), we have:

G = [2/(7._15] {e~cy)

(376)

Ahet.d of the shock wave, .0 - u = O, since both ¢ and u are gero, Direotly
behind the shock wave according to £q. (306), 6 -u=0 through terms of the
order of (é-l)zo Farther behind the shock, (o-u)/c ‘beoomes of the order of
L/r due to the influence of a term similar to the.last term in Eq. {375). If
terms of the order of L/r are neglected we can assume (as in Pennay's treetment)

that everywhore:

g =u ' (377)

The time, t , for a signal traveling with the volocity u *+ ¢ to zgo

from Ry to R i1s then ziven by the relation:

R R R
t=g u“:cgl —— 1(d:1)/zjo+u - Xﬂ — (é:l)/z (578)
R L ot Y e [(y+1)/2}u

Now at sufficlently large distances from tho origin where the inverse square
terms have become neglizible in the &coustical case, the veloctiy of a given
wavelet decays in the following manner:

u(r) = wr-(a-1)/2 .l § s (379)
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Here 'w is a constant characteristic of+fh¢ wevelpiifnd 3g is the mumber of

dimensions of the problem under consideration (q = 1 for a plane wave, 2 for a

cylindrical wave, and 3 for a spherical wave;, Remembering that u is small

compared to ¢j :

R

R
¢ = l dr  =R-Ry fyhl \,‘,SR ~la-1)/2
1 o3t [(Y+1)/2] Lr(‘l-l)ﬁ B e 20%/ 1 (580)

- R-R3 . (;fﬂ')“’ [R(s"q)/aaal(:SQQ)/aJ (Except for g = 3)
c3 01(3=Q)

R-Rj - (y + 1)
= LR A (R/Rq) (for q = 3)
c3 201

Formation of Shocks

Thus if two parts of -a wavelet initially have different mass velo-

cities, they will travel at different velocities, (namely faster whem o and u

ere larger), This makes the compression phase of the wavelet become steeper

and the rarofaction part become more extended. These 9ffects will be more
pronounced in the ons-dimensional than in the twoe-or three-dimensionazl cases.
The following example will make this clear.,

Suppose that at the time t = 0, we have sa sinusoidallpulse traveling

outwards. This is shown in Fig.27(a ). At a somewhat later time, t, this wave

has assumed the shape shown in Fig.27(b)and after a sufficiently long time it

assumes the limiting form shown in P15027{°)a These drawing would have similar

shapes if we plotted the velocity of sound, ¢, versus position rather than

pressure versus position., If the amplitude of the waves is small and they

have travelled suffliciently far so that the inverse square contribution to

the material velocity can be neglected, thea from Eqs. (373) amd (375) it

follows that: e o
u={p~p, )/pe =(p-p, }/p,c, ,°* : : (38
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Thus the greater the pressure the greater the material velocity.
If the overpressure at A 1is initially p, = py -p; and if the
position of A ot this time is Rpy, then:
2o, Pn gla-1)/2 . I B gle-1)/2
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Since the wave lenzth is supposed %o be small compared to the distanceR,;, it

follows that tsgfc; = .wp/fey . At the points F and D ,w =0 .. Now oonsider

the implications of Eq. {380) for the behavior of waves on different numbers

of dimensionse.

After the time +t, the point A has moved the distance Ry - R,q

given by the equation:

= ¢+ 1) 1 pm g (a-1)/2 |g (3-0)/2_ [ (3.3)/%
o1t = Ry-Ryy "(5 - ;;') Y B ol Ra - R

(except . for g = 3) (383)

1
J::) Pm Ryq In Ry/Ry, (for g = 3)

=Ry = Rpy - (Z‘Y oy

In this time, the point F has moved the distance Rp - R given by the
F Fl y

equetion:
°18 = Rp - fpy (384)

At the tima, tAF , when A overtakes Fi

- - (R ;_%:ﬁ 1 pm g (97102 [ (3-9)/2 ({an)/Z]
(RA RAl) (RF RFl) 2 <%&q) ; .EI Rag [&i = By3

(except for q = 3)

+1
=(f--} L Ryy A0 (Ry/Rpy) (for q = 3)

2y | py

o.o - :.. .:. E:. E.:
0% %% % 2" 2 e r
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=117 - .:. .E.E I e ®
Thus when q = }
\
fyp = (L) 152 (L 385
S1%p (T*l) o T\Z. : (385)
i
When q¢ = 2 : ‘
2 2
“Y B 2 v} Rar \p | |
When ¢ = 3
(v+1)] (py/pp) L/Ra3
o1tap = - <-§> * Ryy R Ry (387)
When q = 4 2 ) .
| < (—-'-V-)Lf_];a(.l_'\fi> L2 ("13
ortag = - <.‘:) +0Y Bn  \YTY 4Eap  \pam) (388)
2
-

) B G B

m

Hers the terms <L/2> are neglected since the tims for the shock to
be formed, Ty » is consideored to be long compared to the time for a signal with
the velocity of sound to travel across the wave, This approximation is inherent
throughout the theory, Better results would not be ob'taiﬁed by the inclusicn
of these terms because of compensating errors which will be explained later.
Thus it takes progressively longser time for a shock wave to develop in one, two,

or three dimensions. In more than three dimensions shock waves only ococur if

[y + 1) (LRa1) o1/

is small compared to unity.

Similar developments conld be carried out for the time required for
D +to overtske B, The time for this secord shock to’dmeh? .i£ .%pproximately

the same as the time for the front shock to develo‘pJ---Ihsted.tbg; s);eoks are formed,
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the linearity of u with overpressure insures that the pressure in the pulse
will tecome linear with distance as shown in Fig.27(c),Since the front shock
moves with the velocity characteristic of the peak pressure and the second shock
inoves at a slower velocity characteristic of the iﬁi'cial pressure; the two
shocks will ssparate and the wave will spread.

In tho case of & periodic wave, the wave length remains invari®nt,
However if the wave is originally sinusoidal, it will become saw-toothed with
the peaks corresponding to the original positions of maximum pressure, The
waves cannot spread because the shocks have the samo pressures and therefore

travel at the same velocity.

Decay of Shock ¥Naves

Next we can consider the decay of shock waves from two different
standpoints. The first makes use of this semiacoustical method and the secord
makes use of the thermodynamical arguments stated previously, Both lead to the
seme results. Comsider a shock wave as shown in Fig.27/a).I1f the peak pressure
is pp » the veloocity of the shock front is given by Eq. (296)s

R .

Zy Pl (589)

or expanding:
U= c] [1 +1.-t£‘. (Pa = Pl] = ¢y +@i) uy : (390)
4 Pl 1 '
A = oy +{21) e (a1

5 -O/, P2 "~ Here w is a property of a
l/ ) (a) wavelet whioh may be super-
RQ

§ Ry . o PRscd on:.t?}e.ﬁ?.in pulse at)/
: : *ee &ﬁy 5:"383'&“’8:‘&‘%!; Eqa 379)9
r ~ 4/ (1) o’ :.o:. S

B { i S
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The time required for a shock wave to go from Ry to R 1is them given by the

equation:
R R
dr 2_1_.__ )
: =§‘1dr/U ‘SRI ey [1 +[(Y+1)/4] ("’/"1)!"’(‘1"1)/2] o (R-Ry)
R
(3;_ 1 22" S wr=(a=1)/24. (391)
01 Rl -

The time required for the overtaking wavelst to reach R from its irdtial

position Ri is:

| 1 v 1 . M
.-..;l (RﬁRl) =("ﬂ2—) ‘—h-c’-g{ in (R/Rl) (for q = 3) (392)

*hen t 1is smmll; the overtaking wavelets coms from positions Ri close to Rl )
when t 1is large, R 1is sufficiently larze compared to the wave length that

the difference between Rl and Ry 1is negligitle., Thus we ocsn always neglect

the difference between Rj and R{ and equate the travel times of the shock wave
and the overtaking wavelet: This shows the type of approximations whichare
inherent in this method, The distances between various parts of the pulse are
supposed to be small compared to the distance to the center. This is usually

a good approximation in the case of & blast wave from a high-explosive charge but

it would not be a good approximation in the case of a slow gas explosion.

R

g ,,,,.'(q"l)/zd,. a <(3”Q)/2 (3°Q)/ ) (except for q=3)
Ry .
2 2w F.n(R/Rl) (for 3= S..”) . (393)

.
oee o

e s & e I e

(4 .. :. : : :.. -

e o o e e L4
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Taking the derivutive of both sides of this equation:

" R-(q<,1)/2= (_f.. 4, [“,(R@wq)/zuglu“‘l)/z )} (except for q = 3)

3=q
c P"” =(4=1)/2 4 (p(3-0)/2_p (3-a)/2 y 22| (5
= e ) K ~q q s
- [ > )&;R 2 + (R <Ry ) T (594)
wr~l = 2 fn(R/R,) dw/ar - 2Rt (for q = 3) (395)
From which it follows that i
[1 - (Rl/R)(S"’q)/a] 3 f ("l) {except for q = 3) (396)
d fn /9
c—— T2 / e
i n - (/2 n (R/R1)> (for q = 3)
So that for values of R large compared to R; ,
oy ~ p-(3-a)/4 {for gq¢ 3) (397)
1
W o~ for ¢ =3 398) -
(QnR)lk ( q ) { )

Zut right behind the shoock front, the overpressure p, - py is Ziven by the

equation (from Eqs. (296) and (297):

Pz - p1 = (ypr/e1) ug = (vpy/cy) wR“(‘lfl)/a ' (399)

So that at large distances
(pz = p1)/py ~ g-(atl)/2 (for q< 3) (400)
o~ 1/R(£n&)1{3. (for 1.7 3) (401)
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For ¢ » 3, it is easily shown that « at the shock front reaches a finite

asymptotic value at larze distances so that
(p, = py)/p, ~ r-(3-1)/2 (for q > 3) (402)

The decay of the shock pressure is, of course, faster for higher
number of dimensions, g, for purely geometrical reasons. However, while shock
waves in more than three dimensions would decay just sccording to acoustic theory,
they decay faster than acoustic waves for q € 3. For q =3, the difference
is only the slowly varying faotor {25;—.9 For two dimensions, the decay of
& shook wave is as R”3/4 while acoustic waves decay only as R"l/é § for one
dimension, an acoustic wave would retain its amplitude but a shock wave decays
as R“l/é;

The three dimensional shock waves produced by explosioné start with
little similarity to the sinusoidal wave illustrated in Fig. 27. In the region

of practical interest, there is a sharp positive pulse followed by a long

nezative pulseoT° a fair degree of acouracy, experimental results on three-~

dimensional shook waves in air can be represented at any time by the equation:

= {Rer)/Lo

P o-py=(pp-py) - (rr)/1] o (203)

where R is the position of the front, r is the position at which the
pressure is observed, and L' a half "wave length" which depends mainly on the
explosive enerzy. Egq. (403) is empirically a much better representation of the
pressure distribution than the linear relation betwesn p-p; and r which would

follow from our quasi-acoustic theory.

Relation Between Duration of Pulse and Front Pressure.

From our theory we can obtaun-a,useihl.xeaiy40n between the length of

a shock pulse and the peak pressure (See Fig. 275.. ﬁet us consider the region
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between 0 and A separately from the region between D and O because the
wavelet emitted from O always maintains a pressure of p; and no energy flows
from the region behind O into the region in front of 0, We shall supposs that
L, is the distance between O and A at the time © =0 and L is the dis-
tance at any subsequent time, In accordance with the semi-acocustic theory, we
assume the pressure, p, at any point in the shock wave to be linear with dis-

tance from the shook front, i.e., we take:
p-py = (pz - py) (L-R +r)/L (202)
In the time +%, the point O moves a distance Rp given by the equation:
Rp=o; t (406)

And in this time the shock wave moves from Ry to R given by the equation:

R
1 + 1 (ao
bl (R-R1) = (—};{——) Snl w pola-1)/2g, (206)

{
i

But for very large values of R such that R; 1is negligible compared to
R {c£.Eq. (393)).

R R
1—?—-—4; L (opm(a-1)/2, = -g_,; L %% RB-U2 (eor qu3) (a07)
1

-yl wo oo =
_.1%; = ‘n (R/Rl) (for q = 3) (408)
Therefore the lenzth of the wave becomes

' + 1 -q)/2
L=L°+R-R1=R°==Lo+g-:-; ‘i’-l r(3-2)/2 (g ge3)  (409)

For large R, we may negleoct Ly , If at the same time we express @ in terms of

the front pressure from Eq. (399), wg gaty
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= X111 fp2-P1} . (for q<3) (410)

(3"q)Y pl
Thus the half wave lenzth, L, varies approximately as the distance traveled; R,

times the ratio of the overpressure, pz = pj » to the initial pressure, pj .

If we take into acoount the behavior of the pressure from Eq. (400), we find that

the wave spreads so that:

L ~ g(3-a)/2 (for q « 3) (411)

Yor ¢ = 3, we get corresponding to Eqs.(408) and (410):

L=1L,+ é_‘.z“_l) ‘.:.1 2n(R/R7) ~ (‘( ;‘rl) (Pzp: P 1)& En{R/Rl) (g=3)

(a12)

At sufficiently large values of R, taking into account the fact that the front

pressure is nearly inversely proportional to R, this may be written as:

L '-‘—Q___Y M 1) R Gﬂ.ﬂl} 9@(__}2:_._) (g = 3) (413)
2y P1 ‘\pz~-p1

For air with vy = 1.4

L= .86 R((pz - p1)>~ 7n[pl/(pz - 91)]' (414)
OO 4 | .

For large distances we may use Eq, (401) and find:

(415)

Led {fnR ~ Jﬁn [1/(Pa - Pl)]
Thus the three-dimensional waves spread slowly.

Experimentally, the positive impulse is frequently measured,

I= S(p - py) dt (416)
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Here the intezration is only to be taken over that part of the pulse where

P - pl is positive, For the linear relation (404) between p and R-r, since

R-1r=o01t,
. /01
1= (ps = py) [1 - c]_t/LI dt = (pp ~ py) L/203 (#17)
0 .

The energysgf the shock wave as it passes R may be written:

p=am? | (p-pyuas (418)
o

And since from Eq. (381):

us (p - p1)/eye; (381)
It follows that -
4nR? 2
B = g (p = p3) dt (419)
Pic1 o '
So that for the linear relaﬁ;on (404) between p and Rer,
2L/cq
47R2 . oqt]@ 2 4nq3°
B =20 (pyop)? [1 - ._?:..! at = = 255 (p, - pyp)?L  (420)
P11 b L 3 mey

From the fundemental notions of energy dissipation tegether with our
previous dimensional snalysis, we can obtain another relationship between the
energzy, distance, and front shock pressure which does not involve ths wave
lenzgth or duration of the pulse, As we saw in Eq. (291), the energy dissipated
when a blaét wave passes through a unit volume of matter is p; Ty AS. Thus for
three-dimensional waves, when the shook wave expands from R +to R + dR ;, and
passes through a volume of 4:R® dR, the energy, E, of the pulse is decreased

by 4nR% dR pj Ty AS or:

dE/dR = - 4nR%) T} A4S (4;)
.00 0:0 E:o 050 :oo :o:
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And sinces
¢, Ty = pl/[pl(yal)] | (422)
it follows from Eq. (73) that et the front shock:
+ 1 (pz - p3)*
T4 8= -%—' re ~ 1/ (423)
12 Py 2 4

Py

However, for a linear pulse there is both a fromt and a back shook vave of
approximately the same strength., Therefore the entropy change at the back
shook wave is approximately the same as at the froat shock wave and so alto-

gether the change of energy of the pulse with distance Lecomes:

dg 2 (x*1) (pg = py)®
” = . 8RR ﬁ?‘ ~Ei (424)
151

But from Eq. (401), for thres-dimensional waves after a long times

P2 = Py

= &% ; (425)
Here a is a comstant. Thus:

8E _ 2n '(..*_.’:) a%py (426)

R’ 3 2 R(n R)/2

And integrsating:

B = 4n G—g——%a?’pl (fn R)°l/2 | (427)

After eliminating e :

v+ 1\ (pz = p1)®
E=4n B3 (‘"'—-) LC A | (428)
o 3y Pj

Equation (427) is particularly useful because it shows how the energy

in the shoock wave varies with distaz.xe%o.: is, in?dcf%’%e.:s‘.:& slow dissipation of

=ss.'$‘~ -
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energy, o phenomenon first pointed out by Penney (BM-37, RC-260), Furtherw
more the constant in this equation is somewhere betwecn one half and one third

of the original energy, E,, of the explosion, Assuming that it is ome third,

E = (1/3) Eo/ \!‘Zn? % (1/3) E,  \ba Qa]/(pgapl)) (429)

The energy is also expressed in terms of the half wave lenzth by Eq. (420).

Solving Bgs. (420) and (428) for the half wave length:

L=<L-L~:-L-) (’27p1>RﬁnR ( ) (2»01\ (.__.13!....__)(430)
2 B =P1

This relationship is the same as Hg. (413) which we obtained previously on

purely kinematie considerations, This shows that in the limit of large dis-
tances, the kinemati treatment is consistent with the energy relations. How-
ever, there is considerable dange£~of using the enargy relations for moderate
pressureos where the pulse has not yet roached its limiting linear form. For
example, in this region of.interest, the pulse has more nearly the semi-
empirical form of Eq., (403) and the back shock has not yet developed. Under
these conditions, the energy dissipated is one half thet of the linear pulse
(for the same front shock pressure) and in the relation between energy and

peek pressure, Eq, (428), the numerical coefficient is one half as large.

Roelation Betwsen Peak Proessure, Wave Length and Fnergy.

In order to et a practical relation bstween the various quantities
characterizing a shock wave originatinz from an explosion, it is indicated to
use the semiempirical shape of the pressure pulse, Eq. (403), which is found
to represent fairly well the pressure as a function of time at moderate

prassures {(of the order of 0,1 atm)e Qhe maln

chgracteristics of this pressure

. ‘e -—_.\' )

5 * E '.E====::::::::::s
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1. It has a positive pressure puIsé e %ela%lvaiyzéhort duration
and lower pressure,

2. The total impulse, { pdt, is zero.

These two features of the pressure distribution can be made plausible,
Penney has shown (BM-37, RGuZGO)'that the impulse, fpdt, must go to zero com-
pared to pL'/bl as the wave progresses outwards. This follows simply from energy
conservation, As regards the shape of the weve, the positive pulse including
the shock front is formed immediately by the explosionj it is thefofore
originally quite short., The negative pulse is formed rather late (BM-37,
RC-260) in order to fulfill condition 2 above, At the time of formetion, the
negative pulse involves smaller deviation from the normal pressure pyp than the

positive pulse, and this feature is preserved down to moderate pressures. More-

over, at the time of formation of the negative pulse and spatial dimensions of

the shock wave are gquite large so that the initial lenzth of

the negative pulse is much lonzer than of the positive one, The back shock
wave develops only very late and is extrsmely small in’the reglon of moderate
pressures; it ls, therefore, not taken into account at all in tho wave shape
Eq. (403), These arguments are moant to explain only the qualitative festures
of the wave shape Eq. (403); the actual analytical expression is simply & con-
venient way to represent a wave of these proporties,

The problem now arises how to connect the wave length L' with the
wave length L of the kinematic theory, L%, just as L, represents the length of
the positive pressure pulse, We have already pointed out that the original
length, S,, of the positive pressure pulse, is likely %o be gquite small, Uore-
over, it is easy to see that the contribution of the spreading of the wave is
actually somewhat smaller than is indicated by the second term of Eq. (413).

This is due to the fact tkat the end.oﬁ the pgskava.pressuro pulse (point 0O

in Figure 27) actually moves fa.stor® *man ﬂ.ntimt!c.tﬁzyerturbed sound velooity ¢,
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The velocity of this point is ¢ * u, With the pressure equal to p1; the sqund
velocity ¢ = ¢qo Howaver, the material voloocity u is not equal to zero due

to the afterflowl(terms of 1/%2} which have been neglected in our semiscoustiocal
theory. These afterflow terms are absent at the shock fronty therefore the
propagation velooity of the shock front is just as we have assumed, whereas

the propagation velocity of point O is greater than assumed. This means that

the sécond term in Eg, (413) should actually be less. We believe that it is

a good approximation to cancel this correction azainst the initial wave length Los

and therefore to identify L' with the value L given in Eg, (430).

If we substitute the semiempiriocal shape of the pulse (403) into

Bq. (420) and perform the indicated integration:

aRe

2
E = (Pz -Pl) Lt . (430)
p1cf
But after identifying L' with L in the kinematic treatment we have by Eq. (413)s
L = (Lt_l) R (P2 P\ gn (.__ra;__,) (451)
\ 2y P1 P2 = P1
Eliminating L' from Eqsﬂ'(430) and (431):
mlpf y + 1 PE-PI} / P1
E= —
P10y M2y / P/ \PZ"Pl .

- (55N 5, (fi__i.v) 4n

And making use of Eq.{429) for the energy:

EON
P2=P1

1/3

P P2-Py a(y + 1)py
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Or if R 1is measured in meters, vy = 1.4, Eo is in equivalent toms of

INT and p; is one bar (or atmosphe?e):

) B et e
1l
And from Eg., (431)

(438)

L' = 16 E:';/s $fn [91/592"?1)]

These relations are extremely useful for practical consideretions of blast at

moderate to long distances where the similarity solutions fail.

When we substitute the semi-empirical shape of pulse (403) into

Eq. (416) we Bet for the positive impulse:

I=(py = py) L' a7Y/o) (436)

The “effective length" of the pulse is defined as I'cl/'(p2 - pl)o Thus the
L'/o= 368 L ,

"effective length" of the pulse is

‘o RALEASE
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